Improving Neural Network Reliability for Dynamic System Modeling and Control Optimization Through the Use of Confidence Measures
通过使用置信度措施提高动态系统建模和控制优化的神经网络可靠性
基本信息
- 批准号:9362155
- 负责人:
- 金额:$ 5.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-03-15 至 1994-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9362155 Lee No algorithms exist that generate comprehensive, statistically sound reliability information for neural networks. Reliability of neural nets is affected by (1) the amount of training data, (2) input novelty, (3) data consistency and (4) time-varying system dynamics. Confidence measures con gauge network reliability by indication when sufficient training data has been presented for good generalization, when a neural network's output should be trusted, and when periodic retraining should occur in slow time-varying dynamic systems. They can also help automate neural network controllers in a closed-loop environment. Confidence generation algorithms complement virtually all neural nets and can help their integration with existing controllers into production environments. Unica will develop and test confidence algorithms for each of the four independent factors affecting reliability. This research will be based on established theories and innovative ideas, using artificial and real-world data from "Alcoa's aluminum reduction process. The principal investigator, Yuchun Lee, along with neural network expert, Dr. Richard Lippmann of MIT Lincoln Laboratory, provide the perfect combination of real-world application exposure and theoretical background to conduct this research. Successful results are expected to have great commercial potential for incorporation into neural network-based process control applications. ***
小行星9362155 没有算法存在,产生全面的,统计上健全的可靠性信息的神经网络。 神经网络的可靠性受到以下因素的影响:(1)训练数据的数量,(2)输入的新奇性,(3)数据的一致性和(4)时变系统动态。 置信度通过指示何时已经提供了足够的训练数据用于良好的泛化,何时应该信任神经网络的输出,以及何时应该在慢时变动态系统中进行周期性再训练来衡量网络的可靠性。 它们还可以帮助在闭环环境中实现神经网络控制器的自动化。 置信度生成算法补充了几乎所有的神经网络,可以帮助它们与现有的控制器集成到生产环境中。Unica将为影响可靠性的四个独立因素中的每一个开发和测试置信度算法。 这项研究将基于既定的理论和创新的想法,使用人工和真实世界的数据,从“美国铝业的铝还原过程。 首席研究员李宇春沿着麻省理工学院林肯实验室的神经网络专家理查德·李普曼博士,提供了现实世界应用接触和理论背景的完美结合来进行这项研究。 成功的结果,预计将有很大的商业潜力,纳入基于神经网络的过程控制应用。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuchun Lee其他文献
Therapeutic Effects of Respiratory Muscle Training in Patients with Chronic Obstructive Pulmonary Disease
- DOI:
10.1016/j.apmr.2022.08.960 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:
- 作者:
Yuan-Yang Cheng;Yuchun Lee;Yan-Wen Chen - 通讯作者:
Yan-Wen Chen
Cardiopulmonary Exercise Test Could Predict Mortality in Patients with Interstitial Lung Disease
- DOI:
10.1016/j.apmr.2022.08.961 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:
- 作者:
Yuchun Lee;Yuan-Yang Cheng;Yan-Wen Chen;Wei-Jung Tsai;Chun-Ming Fu;Yan-Kai Wen - 通讯作者:
Yan-Kai Wen
Yuchun Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuchun Lee', 18)}}的其他基金
SBIR PHASE II: A Neuro-Dynamic Programming Approach to Stochastic Control
SBIR 阶段 II:随机控制的神经动态编程方法
- 批准号:
9704090 - 财政年份:1997
- 资助金额:
$ 5.76万 - 项目类别:
Standard Grant
SBIR Phase II: Improving Neural Network Reliability for Dynamic System Modeling and Control Optimization Through the use of Confidence Measures
SBIR 第二阶段:通过使用置信度措施提高动态系统建模和控制优化的神经网络可靠性
- 批准号:
9625725 - 财政年份:1997
- 资助金额:
$ 5.76万 - 项目类别:
Standard Grant
SBIR PHASE I: A Neuro-Dynamic Programming Approach to Stochastic Control
SBIR 第一阶段:随机控制的神经动态编程方法
- 批准号:
9561500 - 财政年份:1996
- 资助金额:
$ 5.76万 - 项目类别:
Standard Grant
相似国自然基金
Neural Process模型的多样化高保真技术研究
- 批准号:62306326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
- 批准号:
2412285 - 财政年份:2024
- 资助金额:
$ 5.76万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 5.76万 - 项目类别:
Standard Grant
Integrating Federated Split Neural Network with Artificial Stereoscopic Compound Eyes for Optical Flow Sensing in 3D Space with Precision
将联合分裂神经网络与人工立体复眼相结合,实现 3D 空间中的精确光流传感
- 批准号:
2332060 - 财政年份:2024
- 资助金额:
$ 5.76万 - 项目类别:
Standard Grant
Heterogeneous Graph Neural Network based Federated Mobile Crowdsensing
基于异构图神经网络的联合移动群智感知
- 批准号:
23K24829 - 财政年份:2024
- 资助金额:
$ 5.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
$ 5.76万 - 项目类别:
Continuing Grant
CSR: Small: Processing-in-Memory enabled Manycore Systems to Accelerate Graph Neural Network-based Data Analytics
CSR:小型:启用内存处理的众核系统可加速基于图神经网络的数据分析
- 批准号:
2308530 - 财政年份:2023
- 资助金额:
$ 5.76万 - 项目类别:
Standard Grant
ATD:Understanding Adversarial Examples in Neural Network: Theory and Algorithms
ATD:理解神经网络中的对抗性例子:理论和算法
- 批准号:
2318926 - 财政年份:2023
- 资助金额:
$ 5.76万 - 项目类别:
Standard Grant
CAREER: Proof Sharing and Transfer for Boosting Neural Network Verification
职业:促进神经网络验证的证明共享和转移
- 批准号:
2238079 - 财政年份:2023
- 资助金额:
$ 5.76万 - 项目类别:
Continuing Grant
CAREER: Neural Network Enhanced Electromagnetics and Multiphysics Simulation Methods for RF and Microwave Reconfigurable Devices
职业:射频和微波可重构器件的神经网络增强电磁学和多物理场仿真方法
- 批准号:
2238124 - 财政年份:2023
- 资助金额:
$ 5.76万 - 项目类别:
Continuing Grant
CAREER: Developing Neural Network Theory for Uncovering How the Brain Learns
职业:发展神经网络理论以揭示大脑如何学习
- 批准号:
2239780 - 财政年份:2023
- 资助金额:
$ 5.76万 - 项目类别:
Standard Grant