Controlling the Chaotic State in Ferromagnetic Response

控制铁磁响应中的混沌状态

基本信息

项目摘要

9400263 Wigen Technical abstract: Chaos is a complicated and often undesirable behavior. The ability to control chaotic behavior is a special attribute that may be beneficial to many applications. The chaotic attractor includes an infinite number of unstable orbits. By applying a well defined perturbation to a system variable it is possible to control the behavior of a chaotic system by stabilizing one of these unstable orbits. By modifying the perturbation the selected orbit may be varied permitting a variety of orbits that are not readily available in a conventional linear system. It is proposed to utilize perturbation of the magnetic field to control the chaotic behavior observed in the ferromagnetic resonance signal. Non-technical abstract: The complex behavior of a chaotic system is commonly known and widely recognized in many systems from bridges and the weather to heart fibrillation and brain signals. In many systems significant effort is made to eliminate the conditions that lead to this chaotic behavior. However, with the recent evolution of "controlling chaos" it is possible to put the system into one of a number of unstable behavioral patterns that are present in a chaotic system. By applying an appropriate control signal it is possible to stabilize these desired patterns. This behavior leads to an increased flexibility in many systems giving rise to new applications and environments. ***
小行星9400263 技术摘要:混沌是一种复杂的,通常不受欢迎的行为。 控制混沌行为的能力是一个特殊的属性,可能有利于许多应用。 混沌吸引子包含了无穷多个不稳定轨道。 通过对系统变量施加一个定义良好的扰动,可以通过稳定这些不稳定轨道之一来控制混沌系统的行为。 通过修改扰动,可以改变所选择的轨道,从而允许在常规线性系统中不容易获得的各种轨道。 提出了利用磁场的扰动来控制在铁磁共振信号中观察到的混沌行为。 非技术摘要:混沌系统的复杂行为是众所周知的,并在许多系统中得到广泛认可,从桥梁和天气到心脏纤颤和大脑信号。 在许多系统中,为了消除导致这种混沌行为的条件,人们做出了巨大的努力。 然而,随着“控制混沌”的最新发展,有可能将系统置于混沌系统中存在的许多不稳定行为模式之一中。 通过施加适当的控制信号,可以稳定这些期望的图案。 这种行为导致许多系统的灵活性增加,从而产生新的应用程序和环境。 ***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Wigen其他文献

Philip Wigen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philip Wigen', 18)}}的其他基金

Investigation of Domain Wall Mobility and Domain Reversal in Magnetic Metal Films
磁性金属薄膜中畴壁迁移率和畴反转的研究
  • 批准号:
    9972538
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Nonlinear Studies in Magnetic Garnet Films
磁性石榴石薄膜的非线性研究
  • 批准号:
    9017223
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Nonlinear Studies in Magnet Garnet Films
磁性石榴石薄膜的非线性研究
  • 批准号:
    8911833
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Magnetic Domain Wall Resonance and the Electric Field Shift of the Ferromagnetic (Materials Research)
磁畴壁共振和铁磁体的电场位移(材料研究)
  • 批准号:
    8620109
  • 财政年份:
    1987
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
U.S.-Italy Cooperative Research: Magnetic and Electrical Properties of the Bound Impurity Electron in Doped Magnetic Semiconductors
美意合作研究:掺杂磁性半导体中束缚杂质电子的磁电特性
  • 批准号:
    8318965
  • 财政年份:
    1985
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Magnetic Domain Hall Resonance and the Electric Field Shift of the Ferromagnetic Resonance (Materials Research)
磁畴霍尔谐振和铁磁谐振的电场位移(材料研究)
  • 批准号:
    8304250
  • 财政年份:
    1983
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Magnetic Resonance in Ferromagnetic Domain Walls
铁磁畴壁中的磁共振
  • 批准号:
    8007642
  • 财政年份:
    1980
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Ferromagnetic Resonance in Complex Magnetic Systems
复杂磁系统中的铁磁共振
  • 批准号:
    7810300
  • 财政年份:
    1978
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Surface Effects in Yttrium Iron Garnet Single Crystal Films
钇铁石榴石单晶薄膜的表面效应
  • 批准号:
    7614450
  • 财政年份:
    1976
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Magnetic Resonance in Dilute Alloys and in Thin Insulator Films
稀合金和绝缘体薄膜中的磁共振
  • 批准号:
    7203078
  • 财政年份:
    1972
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Development of weather-dependent adaptive data assimilation method for all-sky satellite radiances for the better understanding of chaotic nature of the atmosphere
开发全天卫星辐射的依赖天气的自适应数据同化方法,以更好地了解大气的混沌性质
  • 批准号:
    23K13167
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Analysis of Dynamical Structure in the Chaotic Region and Application to Trajectory Design and Optimization
混沌区域动力结构分析及其在轨迹设计与优化中的应用
  • 批准号:
    23KJ1692
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Stable structures and chaotic dynamics in fluid flows
流体流动中的稳定结构和混沌动力学
  • 批准号:
    EP/X020886/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Chaotic Dynamics of Systems with Noise
职业:噪声系统的混沌动力学
  • 批准号:
    2237360
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Untangling Chaotic Electromagnetic Transient Phenomena in Power Systems Mixed with Volatile Inverter-Based Renewable Energy Resources
职业:解开与不稳定的基于逆变器的可再生能源混合的电力系统中的混沌电磁瞬态现象
  • 批准号:
    2237527
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Swimming the Chaotic Seas: Invariant Manifolds, Tori, and the Transport of Swimmers in Fluid Flows
在混乱的海洋中畅游:不变流形、托里和流体流动中游泳者的传输
  • 批准号:
    2314417
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
What predictions can I trust? Stability of chaotic random dynamical systems
我可以相信哪些预测?
  • 批准号:
    DP220102216
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
How do Arctic microalgae thrive in the chaotic light field of in-ice and under-ice marine habitats?
北极微藻如何在冰内和冰下海洋栖息地的混乱光场中繁衍生息?
  • 批准号:
    RGPIN-2020-06384
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
ergotic transition in finitely bounded small number quantum chaotic systems and its semiclassics
有限有界小数量子混沌系统及其半经典中的遍历转变
  • 批准号:
    22K03476
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Geometry and Building Blocks of Chaotic Fluid Convection
混沌流体对流的几何结构和构建模块
  • 批准号:
    2151389
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了