Algebraic spline geometry: towards algorithmic shape representation
代数样条几何:走向算法形状表示
基本信息
- 批准号:EP/V012835/1
- 负责人:
- 金额:$ 39.14万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The increased demand for 3D visualization and simulation software in medicine, additive manufacturing, architectural design, and mechanical engineering, among many other areas, gives rise to new mathematical challenges in applied geometry and approximation theory. At the same time, a new paradigm emerges with the potential use of Machine Learning in Computer-Aided Design and Manufacturing (CAD/CAM) to improve the modelling experience, allowing users to anticipate and repair errors in real time. In this context, understanding the mathematical foundations behind the storage, manipulation and analysis of complex shapes is essential for the development of more accurate and efficient computational methods.This project concerns the study of Algebraic Spline Geometry, a branch of mathematics focused on methods stemming from algebra, geometry and combinatorics, to approach problems arising in approximation theory, computational modelling, and data analysis. The word spline refers to one of the most used tools for shape approximation, they are mathematical representations built upon simpler pieces (usually defined by low-degree polynomials) which are glued together forming a smooth curve, or the surface of a volume. What makes splines an appealing object for shape representation is that besides the simplicity of their construction, they are a fundamental component in the approximation of partial differential equations by the finite element method, playing a central role in novel fields such as Isogeometric Analysis and Computer Vision. Moreover, homological algebra techniques unveil fascinating connections between splines and algebraic geometry, putting spline theory at the interface between commutative algebra, geometric modelling, and numerical analysis. The objective of this project is to develop novel representation techniques for complex shapes by exploiting the ubiquity of splines in algebraic geometry and approximation theory. Splines have been traditionally studied within the realm of numerical analysis and computational mathematics. Instead, the originality of this project resides in proposing an integrated approach to mathematical questions lying at the heart of splines by using methods stemming from algebra, geometry, topology and combinatorics.
医学、增材制造、建筑设计和机械工程等许多领域对3D可视化和仿真软件的需求不断增加,这给应用几何和近似理论带来了新的数学挑战。与此同时,随着机器学习在计算机辅助设计和制造(CAD/CAM)中的潜在应用,一种新的范例出现,以改善建模体验,允许用户预测和修复真实的错误。在这种情况下,理解复杂形状的存储、操作和分析背后的数学基础对于开发更准确和更有效的计算方法至关重要。本项目涉及代数样条几何的研究,这是数学的一个分支,专注于代数、几何和组合学的方法,以解决近似理论、计算建模和数据分析中出现的问题。样条这个词指的是最常用的形状近似工具之一,它们是建立在更简单的片段(通常由低次多项式定义)上的数学表示,这些片段被粘在一起形成光滑曲线或体积的表面。样条曲线之所以成为形状表示的一个吸引人的对象,是因为除了它们的构造简单之外,它们还是有限元法近似偏微分方程的基本组成部分,在等几何分析和计算机视觉等新领域中发挥着核心作用。此外,同调代数技术揭开迷人的连接样条和代数几何,把样条理论之间的接口交换代数,几何建模和数值分析。这个项目的目标是开发新的表示技术,复杂的形状,利用无处不在的样条代数几何和逼近理论。传统上,样条函数是在数值分析和计算数学领域中研究的。相反,该项目的独创性在于通过使用代数、几何、拓扑和组合学的方法,提出了一种综合方法来解决样条函数核心的数学问题。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Lower Bound for Splines on Tetrahedral Vertex Stars
四面体顶点星样条曲线的下界
- DOI:10.1137/20m1341118
- 发表时间:2021
- 期刊:
- 影响因子:1.2
- 作者:DiPasquale M
- 通讯作者:DiPasquale M
Completeness characterization of Type-I box splines
- DOI:
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:N. Villamizar;Angelos Mantzaflaris;B. Juttler
- 通讯作者:N. Villamizar;Angelos Mantzaflaris;B. Juttler
Quaternary quartic forms and Gorenstein rings
第四纪四次形式和戈伦斯坦环
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kapustka G
- 通讯作者:Kapustka G
Multivariate polynomial splines on generalized oranges
广义橙子上的多元多项式样条
- DOI:10.1016/j.jat.2024.106016
- 发表时间:2024
- 期刊:
- 影响因子:0.9
- 作者:Sirvent M
- 通讯作者:Sirvent M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nelly Villamizar其他文献
Nelly Villamizar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
计算机辅助几何设计的一些新方法及其应用
- 批准号:60373093
- 批准年份:2003
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
CRII: OAC: Improved Cyberinfrastructure Usage through High-Fidelity Isogeometric Volumetric Spline Model Generation
CRII:OAC:通过高保真等几何体积样条模型生成改进网络基础设施的使用
- 批准号:
2245491 - 财政年份:2023
- 资助金额:
$ 39.14万 - 项目类别:
Standard Grant
Shared and Distributed Memory Parallel Pre-Conditioning and Acceleration Algorithms for "Spline- Enhanced" Spatial Discretisations
用于“样条增强”空间离散化的共享和分布式内存并行预处理和加速算法
- 批准号:
2907459 - 财政年份:2023
- 资助金额:
$ 39.14万 - 项目类别:
Studentship
高度個別医療に向けた心臓弁まわりの流体解析手法の構築
开发心脏瓣膜周围的流体分析方法,以实现先进的个性化医疗护理
- 批准号:
22K17903 - 财政年份:2022
- 资助金额:
$ 39.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study on free vibration and elastic stability of axially functionally graded materials
轴向功能梯度材料自由振动及弹性稳定性研究
- 批准号:
22K04296 - 财政年份:2022
- 资助金额:
$ 39.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Experimental and numerical studies into the wear of articulating spline couplings
铰接花键联轴器磨损的实验和数值研究
- 批准号:
2782812 - 财政年份:2022
- 资助金额:
$ 39.14万 - 项目类别:
Studentship
Digital terrain model-based analysis focusing on roundness of feature curves and surfaces
基于数字地形模型的特征曲线曲面圆度分析
- 批准号:
21K01021 - 财政年份:2021
- 资助金额:
$ 39.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
冷間曲げによる非可展面成形法に関する研究
冷弯非展开面成形方法研究
- 批准号:
21K04505 - 财政年份:2021
- 资助金额:
$ 39.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Approximating shapes with algebraic spline geometry
用代数样条几何近似形状
- 批准号:
2601170 - 财政年份:2021
- 资助金额:
$ 39.14万 - 项目类别:
Studentship
Local Mesh Refinement for Flow Analysis with Isogeometric Discretization and Topology Change
使用等几何离散化和拓扑变化进行流动分析的局部网格细化
- 批准号:
20K22401 - 财政年份:2020
- 资助金额:
$ 39.14万 - 项目类别:
Grant-in-Aid for Research Activity Start-up