Issues Relating Linear Programming, Complexity Theory and Numeric Computation

线性规划、复杂性理论和数值计算相关问题

基本信息

  • 批准号:
    9403580
  • 负责人:
  • 金额:
    $ 12.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1995
  • 资助国家:
    美国
  • 起止时间:
    1995-07-01 至 1999-06-30
  • 项目状态:
    已结题

项目摘要

The primary objectives concern the development and analysis of algorithms for linear programming within a complexity theory motivated by functional analysis rather than the traditional motivated by algebra and combinatorics. Special attention is given to issues concerning computer round-off error and inexact data, issues such as how one might use the prior knowledge one has regarding the structure of the problem to be solved in order to efficiently solve the problem using less computational precision than would be needed otherwise. The use of iterative methods for solving the equations that arise when applying methods is investigated, as is the possibility that the algorithms are (nearly) optimal; optimality is investigated via approximation theory. Perturbation theory for linear programming is being developed. Certain notions which have proven useful in the context of linear programming are being investigated in a more general context multi-variate polynomials. It is intended that all of the investigations will be carried out with as much generality as is possible; for example, the cones defining non-negativity will not be required to be polyhedral.
主要目标是在由泛函分析而不是由代数和组合学驱动的传统的复杂性理论中开发和分析线性规划的算法。特别注意与计算机舍入误差和不准确数据有关的问题,例如人们如何使用关于要解决的问题的结构的先验知识,以便以比其他情况下所需的更低的计算精度有效地解决问题。研究了迭代方法在求解应用方法时产生的方程的使用,以及算法(接近)最优的可能性;通过逼近理论来研究最优性。线性规划的摄动理论正在发展之中。某些已被证明在线性规划背景下有用的概念正在更一般的背景下被研究,即多元多项式。所有的研究都将尽可能地具有一般性;例如,定义非负性的锥体将不被要求为多面体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Renegar其他文献

Rudiments of an average case complexity theory for piecewise-linear path following algorithms
  • DOI:
    10.1007/bf01580727
  • 发表时间:
    1988-01-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    James Renegar
  • 通讯作者:
    James Renegar
On the cost of approximating all roots of a complex polynomial
  • DOI:
    10.1007/bf01582052
  • 发表时间:
    1985-07-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    James Renegar
  • 通讯作者:
    James Renegar
On the complexity of a piecewise linear algorithm for approximating roots of complex polynomials
  • DOI:
    10.1007/bf01582051
  • 发表时间:
    1985-07-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    James Renegar
  • 通讯作者:
    James Renegar

James Renegar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Renegar', 18)}}的其他基金

Design of Gradient-Based Methods for Solving General and Huge Convex Optimization Problems
解决一般和大型凸优化问题的基于梯度的方法设计
  • 批准号:
    1812904
  • 财政年份:
    2018
  • 资助金额:
    $ 12.21万
  • 项目类别:
    Standard Grant
CCF AF:EAGER:ASSESSING PRACTICALITY OF A NEW FRAMEWORK FOR SOLVING CONIC OPTIMIZATION PROBLEMS BY FIRST-ORDER METHODS
CCF AF:Eager:评估通过一阶方法解决圆锥优化问题的新框架的实用性
  • 批准号:
    1552518
  • 财政年份:
    2015
  • 资助金额:
    $ 12.21万
  • 项目类别:
    Standard Grant
Shrinkwrapping Linear Programs
收缩线性程序
  • 批准号:
    0430672
  • 财政年份:
    2004
  • 资助金额:
    $ 12.21万
  • 项目类别:
    Standard Grant
A Deeper Understanding of the Geometry of Interior-Point Methods
更深入地理解内点方法的几何形状
  • 批准号:
    9901941
  • 财政年份:
    1999
  • 资助金额:
    $ 12.21万
  • 项目类别:
    Standard Grant
Complexity Theory Issues in Numeric and Algebraic Computation
数值和代数计算中的复杂性理论问题
  • 批准号:
    9103285
  • 财政年份:
    1991
  • 资助金额:
    $ 12.21万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Computational Complexity of Linear Programming and Polynomial Zero Approximation
数学科学:线性规划和多项式零逼近的计算复杂性
  • 批准号:
    8800835
  • 财政年份:
    1988
  • 资助金额:
    $ 12.21万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
  • 批准号:
    8511482
  • 财政年份:
    1985
  • 资助金额:
    $ 12.21万
  • 项目类别:
    Fellowship Award
Mathematical Sciences: Average Computational Complexity of Simplicial Algorithms
数学科学:简单算法的平均计算复杂度
  • 批准号:
    8404133
  • 财政年份:
    1984
  • 资助金额:
    $ 12.21万
  • 项目类别:
    Standard Grant

相似海外基金

Relating microbial community structure to functioning in soil carbon sequestration and its controlling factors
微生物群落结构与土壤固碳功能及其控制因素的关系
  • 批准号:
    23K14056
  • 财政年份:
    2023
  • 资助金额:
    $ 12.21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Building an understanding of gender-based differences in service use and outcome relating to emergency care for injuries
了解受伤紧急护理相关服务使用和结果中基于性别的差异
  • 批准号:
    2873108
  • 财政年份:
    2023
  • 资助金额:
    $ 12.21万
  • 项目类别:
    Studentship
Development of mass spectrometry methods to investigate conformations and complexes of proteins relating to health and disease.
开发质谱方法来研究与健康和疾病相关的蛋白质的构象和复合物。
  • 批准号:
    2889424
  • 财政年份:
    2023
  • 资助金额:
    $ 12.21万
  • 项目类别:
    Studentship
Relating changes in melt genesis to dynamic conditions of the demise of a continental arc: Antarctic Peninsula arc
将融化成因的变化与大陆弧消亡的动态条件联系起来:南极半岛弧
  • 批准号:
    2899697
  • 财政年份:
    2023
  • 资助金额:
    $ 12.21万
  • 项目类别:
    Studentship
RI:Small: Modeling and Relating Visual Tasks
RI:Small:建模和关联视觉任务
  • 批准号:
    2329927
  • 财政年份:
    2023
  • 资助金额:
    $ 12.21万
  • 项目类别:
    Continuing Grant
Problems in Harmonic Analysis Relating to Curvature
与曲率相关的谐波分析问题
  • 批准号:
    2246906
  • 财政年份:
    2023
  • 资助金额:
    $ 12.21万
  • 项目类别:
    Standard Grant
Exploration of insulocortical neurons relating to memory consolication of orofacial pain
与口面部疼痛记忆巩固相关的岛皮质神经元的探索
  • 批准号:
    23K18366
  • 财政年份:
    2023
  • 资助金额:
    $ 12.21万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Elucidation of the mechanisms relating to immunoregulation in oral tumor microenvironment and development of novel treatments
阐明口腔肿瘤微环境中免疫调节相关机制并开发新疗法
  • 批准号:
    23H03104
  • 财政年份:
    2023
  • 资助金额:
    $ 12.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Relating phthalate and metals exposure during pregnancy and perimenopause to bone health and body composition in midlife
怀孕和围绝经期期间邻苯二甲酸盐和金属暴露与中年骨骼健康和身体成分的关系
  • 批准号:
    10746972
  • 财政年份:
    2023
  • 资助金额:
    $ 12.21万
  • 项目类别:
ERI: Engineering safer rainwater harvesting systems: Relating viable Legionella concentrations to system design and environmental characteristics
ERI:设计更安全的雨水收集系统:将可行的军团菌浓度与系统设计和环境特征联系起来
  • 批准号:
    2138809
  • 财政年份:
    2022
  • 资助金额:
    $ 12.21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了