Complexity Theory Issues in Numeric and Algebraic Computation
数值和代数计算中的复杂性理论问题
基本信息
- 批准号:9103285
- 负责人:
- 金额:$ 19.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1991
- 资助国家:美国
- 起止时间:1991-09-01 至 1995-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns complexity theoretic aspects of numeric and algebraic computation. One topic is problem solving using approximate data, as occurs if the actual data must be either approximated through experimentation or rounded for computation. Attempts will be made to lay some foundations for a complexity theory which incorporates approximate data, in contrast to traditional complexity theory where exact rational data is required. Some emphasis will be given to devising efficient algorithms for solving certain problems using approximate data, most notably linear programming problems. Another topic is computational real semi-algebraic geometry, e.g., quantifier elimination methods for the first order theory of the reals. Attention will be given to a few well-known open problems in this area as well as to the common ground between it and numeric computation. This common ground is a natural place to build a general theory of condition numbers as well as to study extensions of standard problems in numeric computation such as solution approximation.
这个项目涉及数值和代数计算的复杂性理论方面。其中一个主题是使用近似数据解决问题,如果实际数据必须通过实验近似或四舍五入进行计算,则会出现这种情况。将尝试为包含近似数据的复杂性理论奠定一些基础,与需要精确有理数据的传统复杂性理论形成对比。一些重点将给予设计有效的算法来解决某些问题,使用近似数据,最显著的线性规划问题。另一个主题是计算实数半代数几何,例如,实数一阶理论的量词消去方法。我们将注意到这一领域中几个众所周知的开放问题,以及它与数值计算之间的共同点。这个共同点是建立条件数的一般理论以及研究数值计算中标准问题(如解近似)的扩展的自然场所。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Renegar其他文献
Rudiments of an average case complexity theory for piecewise-linear path following algorithms
- DOI:
10.1007/bf01580727 - 发表时间:
1988-01-01 - 期刊:
- 影响因子:2.500
- 作者:
James Renegar - 通讯作者:
James Renegar
On the cost of approximating all roots of a complex polynomial
- DOI:
10.1007/bf01582052 - 发表时间:
1985-07-01 - 期刊:
- 影响因子:2.500
- 作者:
James Renegar - 通讯作者:
James Renegar
On the complexity of a piecewise linear algorithm for approximating roots of complex polynomials
- DOI:
10.1007/bf01582051 - 发表时间:
1985-07-01 - 期刊:
- 影响因子:2.500
- 作者:
James Renegar - 通讯作者:
James Renegar
James Renegar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Renegar', 18)}}的其他基金
Design of Gradient-Based Methods for Solving General and Huge Convex Optimization Problems
解决一般和大型凸优化问题的基于梯度的方法设计
- 批准号:
1812904 - 财政年份:2018
- 资助金额:
$ 19.28万 - 项目类别:
Standard Grant
CCF AF:EAGER:ASSESSING PRACTICALITY OF A NEW FRAMEWORK FOR SOLVING CONIC OPTIMIZATION PROBLEMS BY FIRST-ORDER METHODS
CCF AF:Eager:评估通过一阶方法解决圆锥优化问题的新框架的实用性
- 批准号:
1552518 - 财政年份:2015
- 资助金额:
$ 19.28万 - 项目类别:
Standard Grant
A Deeper Understanding of the Geometry of Interior-Point Methods
更深入地理解内点方法的几何形状
- 批准号:
9901941 - 财政年份:1999
- 资助金额:
$ 19.28万 - 项目类别:
Standard Grant
Issues Relating Linear Programming, Complexity Theory and Numeric Computation
线性规划、复杂性理论和数值计算相关问题
- 批准号:
9403580 - 财政年份:1995
- 资助金额:
$ 19.28万 - 项目类别:
Standard Grant
Mathematical Sciences: Computational Complexity of Linear Programming and Polynomial Zero Approximation
数学科学:线性规划和多项式零逼近的计算复杂性
- 批准号:
8800835 - 财政年份:1988
- 资助金额:
$ 19.28万 - 项目类别:
Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
8511482 - 财政年份:1985
- 资助金额:
$ 19.28万 - 项目类别:
Fellowship Award
Mathematical Sciences: Average Computational Complexity of Simplicial Algorithms
数学科学:简单算法的平均计算复杂度
- 批准号:
8404133 - 财政年份:1984
- 资助金额:
$ 19.28万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Study of the Issues of Thinking Framework of the Fundamental Postwar Educational Philosophy Based on the Triadic Structure Theory
基于三元结构理论的战后基本教育哲学思维框架问题研究
- 批准号:
23K02166 - 财政年份:2023
- 资助金额:
$ 19.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Settling the Issues of the Public Law after Radical Changes in the Field of Kelsen's Pure Theory of Law and Arranging the Academic Exchanges for the Further Development
解决凯尔森纯粹法学理论领域剧变后的公法问题并为进一步发展安排学术交流
- 批准号:
22H00780 - 财政年份:2022
- 资助金额:
$ 19.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Developing a Theory of Change for the Evaluation of a New Inpatient Unit of Older Adults with Complex Health Issues
制定变革理论来评估患有复杂健康问题的老年人的新住院部
- 批准号:
449158 - 财政年份:2021
- 资助金额:
$ 19.28万 - 项目类别:
Fellowship Programs
Use of Game and Systems Theory to Improve Decision-making for Future Water Security Issues
利用博弈和系统理论改进未来水安全问题的决策
- 批准号:
2274928 - 财政年份:2019
- 资助金额:
$ 19.28万 - 项目类别:
Studentship
A Study on Substantive Law Interpretation Theory that should be Guidance for Arranging Issues and Finding Facts in Criminal Justice
指导刑事司法理清问题、查明事实的实体法解释理论研究
- 批准号:
19H01423 - 财政年份:2019
- 资助金额:
$ 19.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Research on Content Organization Theory of World History Education -Restructuring from ''Contemporary Issues'' Based on the Perspective of ESD-
世界历史教育内容组织理论研究——基于ESD视角的“当代问题”重构——
- 批准号:
18K02555 - 财政年份:2018
- 资助金额:
$ 19.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theory to Practice: Issues and Challenges for Engineering Resilience
理论到实践:工程弹性的问题和挑战
- 批准号:
9477309 - 财政年份:2018
- 资助金额:
$ 19.28万 - 项目类别:
Innovative Applications of Advanced Stochastic Control Theory to Contemporary Issues in Finance and Financial Engineering
先进随机控制理论在当代金融和金融工程问题中的创新应用
- 批准号:
17K01255 - 财政年份:2017
- 资助金额:
$ 19.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Normative Theory of Global Issues
全球问题的规范理论
- 批准号:
16K03532 - 财政年份:2016
- 资助金额:
$ 19.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Challenging econometric issues in nonlinear high-dimensional spatio-temporal prediction: theory and applications
非线性高维时空预测中具有挑战性的计量经济学问题:理论与应用
- 批准号:
DP130101943 - 财政年份:2013
- 资助金额:
$ 19.28万 - 项目类别:
Discovery Projects