A Deeper Understanding of the Geometry of Interior-Point Methods

更深入地理解内点方法的几何形状

基本信息

  • 批准号:
    9901941
  • 负责人:
  • 金额:
    $ 19.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-06-15 至 2003-05-31
  • 项目状态:
    已结题

项目摘要

The project is aimed at providing a better understanding of the geometry of the central paths for linear programming problems, the paths that are followed by interior-point methods. The motivation for better understanding the geometry is the hope that it might be useful in resolving a major open problem in optimization, namely, whether or not a genuinely polynomial algorithm exists. It might be possible to design such an algorithm by extending interior-point ideas, the extensions requiring a deeper understanding of the geometry than presently exists.Another aim is to develop an efficient symbolic method for making queries regarding the exact optimal solutions of semi-definite programming problems. Interior-point methods only approximate the optimal solutions, so in general do not suffice to answer such queries.The research is expected to make the most mathematical interior-point method theory (for general convex optimization) more cohesive, as well as more accessible to researchers in related areas. It is hoped that by focusing on the geometry underlying interior-point methods --- in particular, focusing on the inner products induced by the barrier functions --- the advanced theory can be made more transparent and better motivated to Ph.D. students and outside researchers.
该项目旨在更好地理解线性规划问题的中心路径的几何形状,这些路径遵循内点方法。更好地理解几何的动机是希望它可能有助于解决优化中的一个主要开放问题,即,是否存在真正的多项式算法。通过扩展内点思想来设计这样一个算法是可能的,这种扩展需要比目前存在的更深入的几何理解。另一个目标是开发一种有效的符号方法,用于查询半确定规划问题的精确最优解。内点方法只能近似最优解,因此通常不足以回答此类查询。该研究有望使最具数学性的内点法理论(用于一般凸优化)更具凝聚力,并使相关领域的研究人员更容易使用。希望通过关注内点方法的几何基础-特别是关注由势垒函数引起的内积-可以使先进的理论更加透明,更好地激励博士生和外部研究人员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Renegar其他文献

Rudiments of an average case complexity theory for piecewise-linear path following algorithms
  • DOI:
    10.1007/bf01580727
  • 发表时间:
    1988-01-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    James Renegar
  • 通讯作者:
    James Renegar
On the cost of approximating all roots of a complex polynomial
  • DOI:
    10.1007/bf01582052
  • 发表时间:
    1985-07-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    James Renegar
  • 通讯作者:
    James Renegar
On the complexity of a piecewise linear algorithm for approximating roots of complex polynomials
  • DOI:
    10.1007/bf01582051
  • 发表时间:
    1985-07-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    James Renegar
  • 通讯作者:
    James Renegar

James Renegar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Renegar', 18)}}的其他基金

Design of Gradient-Based Methods for Solving General and Huge Convex Optimization Problems
解决一般和大型凸优化问题的基于梯度的方法设计
  • 批准号:
    1812904
  • 财政年份:
    2018
  • 资助金额:
    $ 19.84万
  • 项目类别:
    Standard Grant
CCF AF:EAGER:ASSESSING PRACTICALITY OF A NEW FRAMEWORK FOR SOLVING CONIC OPTIMIZATION PROBLEMS BY FIRST-ORDER METHODS
CCF AF:Eager:评估通过一阶方法解决圆锥优化问题的新框架的实用性
  • 批准号:
    1552518
  • 财政年份:
    2015
  • 资助金额:
    $ 19.84万
  • 项目类别:
    Standard Grant
Shrinkwrapping Linear Programs
收缩线性程序
  • 批准号:
    0430672
  • 财政年份:
    2004
  • 资助金额:
    $ 19.84万
  • 项目类别:
    Standard Grant
Issues Relating Linear Programming, Complexity Theory and Numeric Computation
线性规划、复杂性理论和数值计算相关问题
  • 批准号:
    9403580
  • 财政年份:
    1995
  • 资助金额:
    $ 19.84万
  • 项目类别:
    Standard Grant
Complexity Theory Issues in Numeric and Algebraic Computation
数值和代数计算中的复杂性理论问题
  • 批准号:
    9103285
  • 财政年份:
    1991
  • 资助金额:
    $ 19.84万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Computational Complexity of Linear Programming and Polynomial Zero Approximation
数学科学:线性规划和多项式零逼近的计算复杂性
  • 批准号:
    8800835
  • 财政年份:
    1988
  • 资助金额:
    $ 19.84万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
  • 批准号:
    8511482
  • 财政年份:
    1985
  • 资助金额:
    $ 19.84万
  • 项目类别:
    Fellowship Award
Mathematical Sciences: Average Computational Complexity of Simplicial Algorithms
数学科学:简单算法的平均计算复杂度
  • 批准号:
    8404133
  • 财政年份:
    1984
  • 资助金额:
    $ 19.84万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Deciphering the origin and geometry of freshwater tufa barrages. From process understanding to sustainable management
破译淡水凝灰岩拦河坝的起源和几何形状。
  • 批准号:
    NE/X012042/1
  • 财政年份:
    2022
  • 资助金额:
    $ 19.84万
  • 项目类别:
    Research Grant
Plant geometry - understanding the molecular basis of gravitropism and growth angle control
植物几何学 - 了解向地性和生长角度控制的分子基础
  • 批准号:
    2602609
  • 财政年份:
    2021
  • 资助金额:
    $ 19.84万
  • 项目类别:
    Studentship
Understanding mechanisms of cellular geometry scaling
了解细胞几何缩放的机制
  • 批准号:
    BB/T000481/1
  • 财政年份:
    2020
  • 资助金额:
    $ 19.84万
  • 项目类别:
    Research Grant
Collaborative Research: Computational methods for understanding the influence of cellular geometry and substructure on signaling
合作研究:了解细胞几何形状和子结构对信号传导影响的计算方法
  • 批准号:
    1902936
  • 财政年份:
    2019
  • 资助金额:
    $ 19.84万
  • 项目类别:
    Continuing Grant
Collaborative Research: Computational Methods for Understanding the Influence of Cellular Geometry and Substructure on Signaling
合作研究:了解细胞几何形状和亚结构对信号传导影响的计算方法
  • 批准号:
    1902854
  • 财政年份:
    2019
  • 资助金额:
    $ 19.84万
  • 项目类别:
    Continuing Grant
A novel integrative approach to understanding skeletal muscle hemodynamics: The interplay between static network geometry and acute arteriolar control
理解骨骼肌血流动力学的一种新颖的综合方法:静态网络几何形状和急性小动脉控制之间的相互作用
  • 批准号:
    RGPIN-2014-06074
  • 财政年份:
    2018
  • 资助金额:
    $ 19.84万
  • 项目类别:
    Discovery Grants Program - Individual
Deeper Understanding of Relations between Mirror Syemmetry and Geometry of Moduli Spaces
更深入地理解镜像对称与模空间几何之间的关系
  • 批准号:
    17K05214
  • 财政年份:
    2017
  • 资助金额:
    $ 19.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A novel integrative approach to understanding skeletal muscle hemodynamics: The interplay between static network geometry and acute arteriolar control
理解骨骼肌血流动力学的一种新颖的综合方法:静态网络几何形状和急性小动脉控制之间的相互作用
  • 批准号:
    RGPIN-2014-06074
  • 财政年份:
    2017
  • 资助金额:
    $ 19.84万
  • 项目类别:
    Discovery Grants Program - Individual
Understanding cell topology and geometry in tissue simulations and in cell cultures
了解组织模拟和细胞培养中的细胞拓扑和几何形状
  • 批准号:
    497358-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 19.84万
  • 项目类别:
    University Undergraduate Student Research Awards
A novel integrative approach to understanding skeletal muscle hemodynamics: The interplay between static network geometry and acute arteriolar control
理解骨骼肌血流动力学的一种新颖的综合方法:静态网络几何形状和急性小动脉控制之间的相互作用
  • 批准号:
    RGPIN-2014-06074
  • 财政年份:
    2016
  • 资助金额:
    $ 19.84万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了