Mathematical Sciences: Topics in Markov Decision Processes

数学科学:马尔可夫决策过程主题

基本信息

项目摘要

9404177 Yushkevich The Theory of Markov Decision Processes (MDP's) is an important tool in operations research, management sciences, and numerical solution of continuous time stochastic control problems. Sensitive criteria in MDP's permit adjustments for the underselectiveness of the average per unit time reward criterion in cases where initial stages are important and they also provide deeper insight into the nature of optimality conditions and equations. Up to now, sensitive criteria have been studied only for MDP's with finite or countable state spaces. Models with a continuous state space are more relevant in many applications, for instance, when there are incomplete observations. The purpose of the proposed research is to extend the theory of sensitive criteria to MDP's with a Borel state space. First of all models with an absolutely continuous transition function will be studied. For such models, we expect to obtain (by means of limit theorems for general state space Markov chains, Laurent expansions of resolvents, and, especially, new techniques for aggregation and compactification of the set of feedback controls) the following results: 1)validity of the lexicographical optimality equation, 2) existence of deterministic stationary sensitively optimal policies, and 3) effectiveness of a lexicographical policy improvement algorithm to get such a policy. Markov Decision Processes provide important tools for the analysis of many control and management optimization problems in which randomness plays a significant role. They are often used to optimize an operation's resource allocations among competing requirements (for example, inventory costs in maintaining a certain number of spare parts for a system versus down time costs for the system versus costs of repairing defective parts of the system in a given amount of time). In many of these problems, the long-run average cost (or reward) is the natural objective function to optimize. However, long-run average criteria are in sensitive to costs or rewards associated with initial stages, which, under certain circumstances, can lead to nonoptimal policies. Sensitive criteria have only been successfully analyzed for the case when the possible states of the system are finite or countable. There are many realistic situations, however, when the appropriate state space is a continuum, for example, when incomplete observations are involved, which is often the case. It is the purpose of this research to extend the theory of sensitive criteria to Markov Decision Processes with Borel state spaces (which are general enough to include all known situations of importance).
9404177 尤什克维奇 马尔可夫决策过程理论(MDP)是运筹学、管理科学和连续时间随机控制问题数值解的重要工具。在MDP的敏感标准允许调整的平均每单位时间奖励标准的选择性不足的情况下,初始阶段是重要的,他们也提供了更深入的了解最优性条件和方程的性质。到目前为止,敏感性准则只研究了有限或可数状态空间的MDP。具有连续状态空间的模型在许多应用中更相关,例如,当存在不完整的观测时。所提出的研究的目的是将敏感准则理论扩展到具有Borel状态空间的MDP。首先研究具有绝对连续转移函数的模型。 对于这样的模型,我们期望获得(通过一般状态空间马尔可夫链的极限定理,预解式的Laurent展开,特别是反馈控制集的聚集和紧化的新技术)得到以下结果:1)字典序最优性方程的有效性,2)确定性平稳灵敏最优策略的存在性,以及3)词典策略改进算法获得这样的策略的有效性。 马尔可夫决策过程为分析许多控制和管理优化问题提供了重要的工具,其中随机性起着重要的作用。它们通常用于优化操作的资源分配之间的竞争的要求(例如,库存成本在维护一定数量的备件的系统与系统的停机时间成本与成本修复系统的缺陷部件在给定的时间量)。在许多这些问题中,长期平均成本(或回报)是优化的自然目标函数。然而,长期平均标准对与初始阶段相关的成本或回报敏感,在某些情况下,这可能会导致非最优政策。灵敏度准则只成功地分析了系统的可能状态是有限或可数的情况。然而,有许多现实的情况下,当适当的状态空间是一个连续体,例如,当不完整的观察,这是经常发生的情况。本研究的目的是将敏感准则理论推广到具有Borel状态空间的马尔可夫决策过程(该状态空间足够一般,可以包括所有已知的重要情况)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Yushkevich其他文献

Alexander Yushkevich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Mathematical Sciences aiming at medical application of light propagation in biomedical tissues and related topics
针对生物医学组织中光传播的医学应用的数学科学及相关主题
  • 批准号:
    16H02155
  • 财政年份:
    2016
  • 资助金额:
    $ 4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
CBMS Regional Conference in the Mathematical Sciences - "Finite Morse Index Solutions and Related Topics" -Winter 2007
CBMS 数学科学区域会议 - “有限莫尔斯指数解决方案和相关主题” - 2007 年冬季
  • 批准号:
    0628079
  • 财政年份:
    2007
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences -Generalized Linear Mixed Models and Related Topics - June 8-12,1999
NSF/CBMS 数学科学区域会议 - 广义线性混合模型及相关主题 - 1999 年 6 月 8 日至 12 日
  • 批准号:
    9813374
  • 财政年份:
    1999
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Symbolic Dynamics and Related Topics
数学科学:符号动力学及相关主题
  • 批准号:
    9706852
  • 财政年份:
    1997
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Topics in Fluid Dynamics
数学科学:流体动力学主题
  • 批准号:
    9622735
  • 财政年份:
    1996
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Topics in Nonparametric Analysis and Model Building
数学科学:非参数分析和模型构建主题
  • 批准号:
    9625777
  • 财政年份:
    1996
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Topics in Model Theory
数学科学:模型论主题
  • 批准号:
    9696268
  • 财政年份:
    1996
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Mathematical Topics in Combustion
数学科学:燃烧中的数学主题
  • 批准号:
    9600103
  • 财政年份:
    1996
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Diffusion Processes and Related Topics
数学科学:扩散过程及相关主题
  • 批准号:
    9625782
  • 财政年份:
    1996
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Topics in Commutative Algebra
数学科学:交换代数主题
  • 批准号:
    9622224
  • 财政年份:
    1996
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了