Mathematical Sciences: Advanced Numerical Methods for Problems in the Physical Sciences
数学科学:物理科学问题的高级数值方法
基本信息
- 批准号:9404410
- 负责人:
- 金额:$ 10.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-06-15 至 1998-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Puckett The investigator undertakes the design, development and application of numerical methods for modeling fluid flows in which an essential feature of the flow is the presence of a moving boundary or interface. These methods are designed to study four specific problem areas: flow in ink jet dispensing devices, convection in weld pools, flames in compressible fluid flow, and high-velocity impact events in the geosciences. Work on these applications is conducted in close collaboration with experts in the relevant disciplines. The numerical methods are based on a collection of second-order "Godunov" methods for solving the equations of motion and second-order volume-of-fluid interface tracking algorithms for modeling the motion of the material interface. This methodology is coupled to a Cartesian grid method dor modeling arbitrary boundary geometries and an adaptive mesh refinement algorithm for locally concentrating computational effort in regions where it is most needed to achieve a given level of accuracy. The project aims to produce a collection of numerical methods that will enable researchers in the applied sciences and industry to model a broad class of problems that involve the motion of a material interface with confidence that the numerical results yield reliable quantitative data that is in good agreement with experiment. A second goal is to develop students who have a thorough understanding of this methodology and who can create new models and numerical methods based on these models to address problems that arise in science and industry. Computer models are an increasingly important part of the product design cycle in an ever increasing number of industries. Device simulation models are now routinely used in the semiconductor industry while the Boeing 777 is being called the first airplane to be designed on a computer. These models can reduce the product design cycle by months and sometimes years. However, there are still many importa nt industrial R&D problems for which current numerical methodology is either inadequate or nonexistent. One such class includes problems that are characterized by the presence of an interface between two materials or between different phases of a material. Examples include fluid jetting devices, mold filling and casting, etching of semiconductor devices, and thin film coatings. The goal of this research is to develop a new generation of advanced numerical methods for modeling such problems. These methods are designed to model four specific applications: flow in fluid jetting devices, convection in weld pools, flames in compressible fluid flow, and high-velocity impact events. Work on these applications is conducted in close collaboration with experts in the relevant disciplines. For example, the research on fluid jetting devices is conducted in collaboration with scientists at Xerox's Wilson Research Center in Rochester, NY and at MicroFab Inc. in Plano, TX. The first goal of the project is to produce a collection of numerical methods that will enable researchers in the applied sciences and industry to model a broad class of problems that involve the motion of a material interface, with confidence that the numerical results yield reliable quantitative data that is in good agreement with experiment. The second goal is to meet the ever increasing demand for scientists who are experts in the design and use of computational models of industrial processes by training students in all aspects of this field. This training includes student internships in industrial laboratory settings.
Puckett 研究人员负责设计,开发和应用模拟流体流动的数值方法,其中流动的一个基本特征是存在移动边界或界面。 这些方法的目的是研究四个具体的问题领域:在喷墨点胶设备,对流焊池,火焰中的可压缩流体流动,和高速冲击事件的地球科学。 这些应用程序的工作是与相关学科的专家密切合作进行的。 数值方法是基于一个集合的二阶“Goddom”的方法来解决的运动方程和二阶体积的流体界面跟踪算法建模的材料界面的运动。 这种方法是耦合到笛卡尔网格方法或建模任意边界几何形状和自适应网格细化算法局部集中的计算工作,它是最需要达到给定的精度水平的区域。 该项目旨在产生一系列数值方法,使应用科学和工业领域的研究人员能够对涉及材料界面运动的广泛一类问题进行建模,并确信数值结果产生与实验吻合良好的可靠定量数据。 第二个目标是培养对这种方法有透彻理解的学生,他们可以根据这些模型创建新的模型和数值方法,以解决科学和工业中出现的问题。 在越来越多的行业中,计算机模型是产品设计周期中越来越重要的一部分。 半导体行业现在经常使用器件仿真模型,而波音777被称为第一架在计算机上设计的飞机。 这些模型可以将产品设计周期缩短数月甚至数年。 然而,仍然有许多重要的工业R D问题,目前的数值方法是不够的或不存在。 其中一类问题的特征在于两种材料之间或材料的不同相之间存在界面。 实例包括流体喷射装置、模具填充和铸造、半导体装置的蚀刻和薄膜涂层。 本研究的目标是开发新一代的先进的数值方法来模拟这样的问题。 这些方法的目的是模拟四个具体的应用:流体喷射装置中的流动,焊接池中的对流,可压缩流体流中的火焰,以及高速冲击事件。 这些应用程序的工作是与相关学科的专家密切合作进行的。 例如,关于流体喷射装置的研究是与位于纽约州罗切斯特的施乐威尔逊研究中心和MicroFab公司的科学家合作进行的。位于德克萨斯州普莱诺。 该项目的第一个目标是产生一系列数值方法,使应用科学和工业领域的研究人员能够对涉及材料界面运动的广泛一类问题进行建模,并确信数值结果产生的可靠定量数据与实验结果吻合良好。 第二个目标是通过培训学生在这一领域的各个方面,满足对科学家的日益增长的需求,他们是设计和使用工业过程计算模型的专家。 该培训包括学生在工业实验室环境中的实习。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elbridge Puckett其他文献
Elbridge Puckett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elbridge Puckett', 18)}}的其他基金
SI2-SSE: Development and Implementation of Software Elements using State-of-the-Art Computational Methodology to Advance Modeling Heterogeneities and Mixing in Earth's Mantle
SI2-SSE:使用最先进的计算方法开发和实施软件元素,以推进地幔异质性和混合的建模
- 批准号:
1440811 - 财政年份:2014
- 资助金额:
$ 10.62万 - 项目类别:
Standard Grant
Scientific Computing Research Environments for the Mathematical Sciences (SCREMS)
数学科学的科学计算研究环境 (SCREMS)
- 批准号:
0532308 - 财政年份:2005
- 资助金额:
$ 10.62万 - 项目类别:
Standard Grant
Mathematical Sciences: Development of an Advanced Numerical Method for Modeling Thermal Ink Jet Devices
数学科学:热喷墨设备建模先进数值方法的开发
- 批准号:
9626153 - 财政年份:1996
- 资助金额:
$ 10.62万 - 项目类别:
Standard Grant
Mathematical Sciences Computing Research Environments
数学科学计算研究环境
- 批准号:
9508411 - 财政年份:1995
- 资助金额:
$ 10.62万 - 项目类别:
Standard Grant
Mathematical Sciences: Development and Application of Advanced Numerical Methods to Outstanding Problems in Experimental Shock Waves Geophysics
数学科学:先进数值方法在实验冲击波地球物理突出问题中的发展和应用
- 批准号:
9316529 - 财政年份:1994
- 资助金额:
$ 10.62万 - 项目类别:
Standard Grant
Mathematical Sciences: Advanced Numerical Methods for Modeling Fluid Interfaces
数学科学:流体界面建模的高级数值方法
- 批准号:
9104472 - 财政年份:1991
- 资助金额:
$ 10.62万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
UK-Africa Postgraduate Advanced Study Institute in Mathematical Sciences (UK-APASI)
英国-非洲数学科学研究所 (UK-APASI)
- 批准号:
EP/T00410X/1 - 财政年份:2020
- 资助金额:
$ 10.62万 - 项目类别:
Research Grant
US-Africa Advanced Study Institute and Workshop Series in Mathematical Sciences
美非数学科学高级研究院及研讨会系列
- 批准号:
1050259 - 财政年份:2011
- 资助金额:
$ 10.62万 - 项目类别:
Standard Grant
Mathematical Sciences: Development of an Advanced Numerical Method for Modeling Thermal Ink Jet Devices
数学科学:热喷墨设备建模先进数值方法的开发
- 批准号:
9626153 - 财政年份:1996
- 资助金额:
$ 10.62万 - 项目类别:
Standard Grant
Mathematical Sciences: Advanced Computational Stochastic Dynamic Programming for Continuous Time Problems
数学科学:连续时间问题的高级计算随机动态规划
- 批准号:
9626692 - 财政年份:1996
- 资助金额:
$ 10.62万 - 项目类别:
Standard Grant
Mathematical Sciences: Collaborative Research for Advanced Modeling and Numerical Simulation of Surfactant Enhanced Aquifer Remediation
数学科学:表面活性剂强化含水层修复高级建模和数值模拟的协作研究
- 批准号:
9634325 - 财政年份:1996
- 资助金额:
$ 10.62万 - 项目类别:
Standard Grant
Mathematical Sciences: Advanced Training in Modern Analysis
数学科学:现代分析高级培训
- 批准号:
9500288 - 财政年份:1995
- 资助金额:
$ 10.62万 - 项目类别:
Continuing Grant
Mathematical Sciences: Development and Application of Advanced Numerical Methods to Outstanding Problems in Experimental Shock Waves Geophysics
数学科学:先进数值方法在实验冲击波地球物理突出问题中的发展和应用
- 批准号:
9316529 - 财政年份:1994
- 资助金额:
$ 10.62万 - 项目类别:
Standard Grant
Mathematical Sciences: Advanced Spectral Formulations for the Boundary Integral Method
数学科学:边界积分方法的高级谱公式
- 批准号:
9312308 - 财政年份:1994
- 资助金额:
$ 10.62万 - 项目类别:
Standard Grant
Mathematical Sciences: Center for Advanced Scientific Computing
数学科学:高级科学计算中心
- 批准号:
9305814 - 财政年份:1993
- 资助金额:
$ 10.62万 - 项目类别:
Standard Grant
Mathematical Sciences: Ross Young Scholars - Advanced Component
数学科学:罗斯青年学者 - 高级组件
- 批准号:
9303140 - 财政年份:1993
- 资助金额:
$ 10.62万 - 项目类别:
Standard Grant