Mathematical Sciences: Investigations Into Computationally Intensive Statistical Methods

数学科学:计算密集型统计方法的研究

基本信息

  • 批准号:
    9404594
  • 负责人:
  • 金额:
    $ 6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1994
  • 资助国家:
    美国
  • 起止时间:
    1994-07-01 至 1997-06-30
  • 项目状态:
    已结题

项目摘要

9404594 Owen This project considers modern computationally intensive statistical methods, focussing on problems of numerical quadrature in high dimensions and neural networks in noisy settings. The work on quadrature will develop hybrids of equidistribution methods and Monte Carlo methods, in order to combine the best features of each. Equidistribution methods commonly provide more accurate estimates of integrals, as borne out by asymptotic calculations and some examples in the computational physics literature. Monte Carlo methods, make it easier to assess the accuracy of an estimated integral. The hybrid is formed by randomizing within a class of equidistribution methods developed by Faure and Niederreiter. It is expected that the resulting methods will produce accurate answers whose accuracy can be reliably gauged from the same data used to generate them. Artificial neural networks are widely used to predict and classify responses based on a set of predictors. They are better able to estimate complicated structures than many traditional statistical tools. They are also more prone to finding structures when given purely random data to train on. The problems considered here are guaging how much structure a neural network will learn in a noisy setting, and constructing networks that find less structure in the noise while remaining sensitive to true structure. The integrals considered here may be thought of as averages of one "output" quantity as perhaps ten or twenty "input" quantities vary over their possible values. These averages are of interest in problems from chemistry, physics, finance and statistics. One approach to calculating these averages is based on picking a list of representative input settings, evenly spread through the possible input values, and then averaging the corresponding output values. For many problems this method is quite accurate, but on any given problem it can be hard to tell exactly how accurate the answer is. A second approach uses a randomly chosen list of in put settings. This approach is usually less accurate but there are ways of using the randomness to make probabilistic accuracy statements about the answer. The proposed research combines these ideas by taking a representative list of input settings and randomly scrambling it in a way that preserves the representativeness but should still allow probabilistic statements of accuracy to be made. Artificial neural networks are often used in statistical problems such as predicting what group an object belongs to, given some measured features of it, or predicting an output number given some input numbers. They are called neural networks based on an analogy between their structure and that of a brain. They are usually trained on a set of data containing the true inputs and outputs and in many problems are effective at learning to predict future outputs from future inputs, even when the input-output relationship is very complicated. The proposed work is to study the extent to which artificial neural networks mistakenly learn random patterns from data in which the inputs are irrelevant to the outputs, and to identify which sorts of neural networks are less prone to this problem.
9404594 欧文 该项目考虑了现代计算密集型统计方法,重点关注高维数值求积和噪声环境中的神经网络问题。关于求积的工作将发展等分布方法和蒙特卡罗方法的混合,以便联合收割机结合每种方法的最佳特性。等分布方法通常提供更精确的积分估计,如渐近计算和计算物理文献中的一些例子所证明的。蒙特卡罗方法,使其更容易评估估计积分的准确性。该混合动力车是通过随机化一类均匀分布的方法由福雷和Niederreiter。预计由此产生的方法将产生准确的答案,其准确性可以从用于生成它们的相同数据中可靠地衡量。人工神经网络被广泛用于基于一组预测因子来预测和分类响应。与许多传统的统计工具相比,它们能够更好地估计复杂结构。当给定纯随机数据进行训练时,它们也更容易找到结构。这里考虑的问题是,在噪声环境中,神经网络将学习多少结构,并构建在噪声中找到较少结构的网络,同时保持对真实结构的敏感性。 这里考虑的积分可以被认为是一个“输出”量的平均值,因为可能有十个或二十个“输入”量在其可能的值上变化。这些平均值在化学、物理、金融和统计问题中很有意义。计算这些平均值的一种方法是基于挑选一系列代表性的输入设置,均匀分布在可能的输入值中,然后对相应的输出值进行平均。对于许多问题,这种方法是相当准确的,但对于任何给定的问题,很难确切地告诉答案有多准确。第二种方法使用随机选择的输入设置列表。这种方法通常不太准确,但有一些方法可以使用随机性来对答案进行概率准确性陈述。拟议的研究结合了这些想法,采取了一个有代表性的输入设置列表,并随机打乱它的方式,保留了代表性,但仍然应该允许概率的准确性声明作出。人工神经网络通常用于统计问题,例如预测对象属于哪一组,给出它的一些测量特征,或者预测给定一些输入数字的输出数字。它们被称为神经网络,这是基于它们的结构与大脑的结构之间的类比。它们通常在包含真实输入和输出的一组数据上进行训练,并且在许多问题中,即使在输入-输出关系非常复杂的情况下,它们也能有效地学习从未来输入预测未来输出。拟议的工作是研究人工神经网络从输入与输出无关的数据中错误地学习随机模式的程度,并确定哪种神经网络不太容易出现这个问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Art Owen其他文献

Art Owen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Art Owen', 18)}}的其他基金

Randomized quasi-Monte Carlo sampling for scientific computing
用于科学计算的随机准蒙特卡洛采样
  • 批准号:
    2152780
  • 财政年份:
    2022
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
BIGDATA: F: Computationally Efficient Algorithms for Large-Scale Crossed Random Effects Models
BIGDATA:F:大规模交叉随机效应模型的计算高效算法
  • 批准号:
    1837931
  • 财政年份:
    2018
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Non-uniform sampling of permutations and large scale hypothesis testing
排列的非均匀采样和大规模假设检验
  • 批准号:
    1521145
  • 财政年份:
    2015
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Monte Carlo and Quasi-Monte Carlo Methods for Statistics
蒙特卡罗和准蒙特卡罗统计方法
  • 批准号:
    1407397
  • 财政年份:
    2014
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
MCQMC 2014 Travel Support
MCQMC 2014 旅行支持
  • 批准号:
    1357690
  • 财政年份:
    2014
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
MCQMC 2012
2012年MCQMC
  • 批准号:
    1135257
  • 财政年份:
    2011
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Monte Carlo and Quasi-Monte Carlo Methods for Statistics
蒙特卡罗和准蒙特卡罗统计方法
  • 批准号:
    0906056
  • 财政年份:
    2009
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Travel support for MCQMC July 2008, Montreal, Canada
为 MCQMC 提供差旅支持,2008 年 7 月,加拿大蒙特利尔
  • 批准号:
    0805890
  • 财政年份:
    2008
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Monte Carlo and Quasi-Monte Carlo Methods for Statistics
蒙特卡罗和准蒙特卡罗统计方法
  • 批准号:
    0604939
  • 财政年份:
    2006
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Statistical Integration and Approximation
统计积分和近似
  • 批准号:
    0306612
  • 财政年份:
    2003
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Mathematical Sciences: Investigations on Normal and Paracompact Spaces
数学科学:正规空间和仿紧空间的研究
  • 批准号:
    9623391
  • 财政年份:
    1996
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: "Nonlinear Modeling of Spatially Correlated Data: Preliminary Investigations"
数学科学:“空间相关数据的非线性建模:初步研究”
  • 批准号:
    9631877
  • 财政年份:
    1996
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Computational and Mathematical Investigations in Optimization
数学科学:优化中的计算和数学研究
  • 批准号:
    9505155
  • 财政年份:
    1995
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Investigations into Development of Microstructure, Ginzburg-Landau Vortices, and Travelling Waves on Lattics
数学科学:微观结构、金兹堡-朗道涡旋和格子上行波的发展研究
  • 批准号:
    9501395
  • 财政年份:
    1995
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Investigations in Number Theory
数学科学:数论研究
  • 批准号:
    9424642
  • 财政年份:
    1995
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Investigations in Mixed Integer Programming
数学科学:混合整数规划研究
  • 批准号:
    9407142
  • 财政年份:
    1994
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Investigations of Phase Transitions Using Relaxation and Nonlocal Regularization
数学科学:利用弛豫和非局部正则化研究相变
  • 批准号:
    9403844
  • 财政年份:
    1994
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Investigations in Order Restricted Inference and Improved Inference Procedures
数学科学:有序限制推理和改进推理程序的研究
  • 批准号:
    9400476
  • 财政年份:
    1994
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Investigations in Mathematical Statistics
数学科学:数理统计研究
  • 批准号:
    9596094
  • 财政年份:
    1994
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Investigations in Bayesian Analysis,Statistical Decision Theory, and Computation
数学科学:贝叶斯分析、统计决策理论和计算研究
  • 批准号:
    9303556
  • 财政年份:
    1993
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了