Mathematical Sciences: Mathematical and Statistical Foundations of Chaotic Solitons
数学科学:混沌孤子的数学和统计基础
基本信息
- 批准号:9418780
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-08-15 至 1996-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This investigation constitutes an interdisciplinary and international approach to establishing new mathematical tools and computational models for the study of localizable and nonstationary chaotic attractors with the statistical behavior of solitons. These attractors, termed chaotic solitons, have been theorized as having a role in simple conservative systems with direct relevance to a wide range of phenomena including elementary particle interactions, atomic clustering, and biomolecular dynamics such as protein folding and cytoskeletal assembly. Chaos and solitons have generally been portrayed as being disparate with the consequence that quantum theory and chaos have been generally dissociated. However, the present line of research points toward mathematical affinities between quantum field theory and multidimensional nonstationary solitons; these affinities indicate simpler methods for describing quantum processes, derivable from classical chaos and network theories. Algebraic and topological methods for representing the statistical descriptions of attractor field states will be explored. Extension of one-dimensional chaotic soliton models into two, three and four dimensions with constraints relevant to observed physics will be a fundamental first step. An extensive amount of theoretical work has been done in particular by a long-standing group of mathematicians at the Joint Institute for Nuclear Research in Dubna, Russia, under the direction of Dr. I. Bogolubsky. A major goal of this proposal is to consolidate, evaluate, and mathematically transform the work that has grown out of this Russian team into mathematics and computer modeling readily accessible to the U. S. mathematical, statistical, and physics communities. The proposed effort is based on the belief that it is time-critical to organize efforts to consolidate and extend this work through international cooperative study.
本研究为研究具有孤子统计行为的可定域非稳态混沌吸引子建立了新的数学工具和计算模型。这些吸引子,被称为混沌孤子,已经被理论化为在简单的保守系统中发挥作用,与广泛的现象直接相关,包括基本粒子相互作用,原子聚类和生物分子动力学,如蛋白质折叠和细胞骨架组装。混沌和孤子通常被描述为完全不同的,结果是量子理论和混沌通常是分离的。然而,目前的研究方向指向量子场论与多维非平稳孤子之间的数学联系;这些相似性表明了描述量子过程的更简单的方法,可以从经典混沌和网络理论中推导出来。将探讨表示吸引子场态统计描述的代数和拓扑方法。将一维混沌孤子模型扩展到二维、三维和四维,并与观测到的物理相关的约束将是基本的第一步。俄罗斯杜布纳联合核研究所(Joint Institute for Nuclear Research)的一群数学家,在I. Bogolubsky博士的指导下,已经完成了大量的理论工作。该提案的一个主要目标是巩固、评估和在数学上将这个俄罗斯团队的成果转化为易于美国数学、统计和物理社区访问的数学和计算机建模。所提议的努力是基于这样一种信念,即通过国际合作研究来组织巩固和扩大这项工作的努力是非常及时的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Dudziak其他文献
Martin Dudziak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
REU Site: Mathematical, Statistical, and Computational Methods in the Life Sciences
REU 网站:生命科学中的数学、统计和计算方法
- 批准号:
2050133 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Statistical and Applied Mathematical Sciences Institute
统计与应用数学科学研究所
- 批准号:
1929298 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Statistical and Applied Mathematical Sciences Institute
统计与应用数学科学研究所
- 批准号:
1638521 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
REU Site: Summer Undergraduate Research for Students who are Deaf or Hard-of-Hearing in Applying Mathematical and Statistical Methods to Problems from the Sciences
REU 网站:针对聋哑或听力障碍学生应用数学和统计方法解决科学问题的暑期本科生研究
- 批准号:
1659299 - 财政年份:2017
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
RTG: Data-Oriented Mathematical and Statistical Sciences
RTG:面向数据的数学和统计科学
- 批准号:
1502640 - 财政年份:2015
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
CBMS2015: A Study of Undergraduate Programs in the Mathematical and Statistical Sciences in the United States and the Publication of the Results
CBMS2015:美国数学与统计科学本科专业研究及结果发表
- 批准号:
1441478 - 财政年份:2015
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Training the Next Generation of Mathematical and Statistical Sciences Professionals: A Workforce Development Project
培训下一代数学和统计科学专业人员:劳动力发展项目
- 批准号:
1338413 - 财政年份:2013
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - ``Statistical Climatology'' - ``June 18-22, 2012 ''
CBMS 数学科学区域会议 - “统计气候学” - “2012 年 6 月 18-22 日”
- 批准号:
1137649 - 财政年份:2012
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Statistical and Applied Mathematical Sciences Institute
统计与应用数学科学研究所
- 批准号:
1127914 - 财政年份:2012
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
UBM-Institutional: Interdisciplinary Training and Research for Undergraduates in Biological and Mathematical/Statistical Sciences at UMBC
UBM-机构:UMBC 生物和数学/统计科学本科生的跨学科培训和研究
- 批准号:
1031420 - 财政年份:2010
- 资助金额:
$ 5万 - 项目类别:
Standard Grant














{{item.name}}会员




