Prmblems In Linear & Nonlinear Wave Motion

线性问题

基本信息

项目摘要

DMS-9500823 Rauch Global regularity and short wavelength asymptotic expansions of nonlinear hyperbolic partial differential equations arising, in particular, in the modelling of intense lasers and fluid dynamics are the central themes of the proposal. One goal for both methods is to understand better the focussing into long lived filaments that is observed in intense ultra brief laser pulses. The derivations of estimates proving regularity or breakdown of solutions, and, the study of nonlinear geometric optics expansions near focal points are key objectives. The objective is to study the solutions of fundamental equations describing the propagation and interaction of intense waves. These equations cannot be solved exactly so incisive approximate methods together with rigorous qualitative methods are developed. Two problems of particular interest are the interaction of intense lasers with matter, and, complex fluid flows. A goal is to develope methods related to the classical ideas of ray optics. Such methods have already played an important role in the discovery and analysis of new phenomena.
特别是在强激光和流体动力学建模中产生的非线性双曲型偏微分方程的全局正则性和短波长渐近展开是该提案的中心主题。这两种方法的一个目标是更好地理解在强烈的超短激光脉冲中观察到的长寿命细丝的聚焦。估计证明规则性或故障的解决方案的推导,以及焦点附近的非线性几何光学展开的研究是关键目标。 目的是研究描述强波传播和相互作用的基本方程的解。这些方程不能精确求解,因此发展了精确的近似方法和严格的定性方法。两个特别感兴趣的问题是强激光与物质的相互作用以及复杂的流体流动。 一个目标是发展与射线光学的经典思想有关的方法。这些方法在发现和分析新现象方面已经发挥了重要作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Rauch其他文献

Instability of Dielectrics and Conductors in Electrostatic Fields
Euclidean nonlinear classical field equations with unique vacuum
Intuitive and Counterintuitive Energy Flux

Jeffrey Rauch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Rauch', 18)}}的其他基金

Multiscale Analysis of Hyperbolic Partial Differential Equations
双曲偏微分方程的多尺度分析
  • 批准号:
    0807600
  • 财政年份:
    2008
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant
Applied Hyperbolic Partial Differential Equations
应用双曲偏微分方程
  • 批准号:
    0405899
  • 财政年份:
    2004
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant
Nonlinear Geometric Optics
非线性几何光学
  • 批准号:
    0104096
  • 财政年份:
    2001
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant
Qualitative Behavior of Nonlinear Hyperbolic Waves
非线性双曲波的定性行为
  • 批准号:
    9803296
  • 财政年份:
    1998
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant
U.S.-France Cooperative Research: Nonlinear Geometric Optics
美法合作研究:非线性几何光学
  • 批准号:
    9314095
  • 财政年份:
    1994
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Problems in Linear and Nonlinear WaveMotion
数学科学:线性和非线性波动问题
  • 批准号:
    9203413
  • 财政年份:
    1992
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Penalization Techniques for the Studyof Free and Moving Boundaries
数学科学:研究自由边界和移动边界的惩罚技术
  • 批准号:
    9003256
  • 财政年份:
    1990
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Linear and Nonlinear Wave Motion
数学科学:线性和非线性波动
  • 批准号:
    8902387
  • 财政年份:
    1989
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Research Equipment
数学科学研究设备
  • 批准号:
    8704372
  • 财政年份:
    1987
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Problems in Linear and Nonlinear WaveMotion
数学科学:线性和非线性波动问题
  • 批准号:
    8601783
  • 财政年份:
    1986
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Regulation of Linear Ubiquitin Signaling in Innate Immunity
先天免疫中线性泛素信号传导的调节
  • 批准号:
    MR/X036944/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Research Grant
CAREER: Scalable algorithms for regularized and non-linear genetic models of gene expression
职业:基因表达的正则化和非线性遗传模型的可扩展算法
  • 批准号:
    2336469
  • 财政年份:
    2024
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
  • 批准号:
    EP/Y030249/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Research Grant
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
  • 批准号:
    2340527
  • 财政年份:
    2024
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
  • 批准号:
    2338655
  • 财政年份:
    2024
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
  • 批准号:
    2338704
  • 财政年份:
    2024
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Continuing Grant
RII Track-4:NSF: Construction of New Additive and Semi-Implicit General Linear Methods
RII Track-4:NSF:新的加法和半隐式一般线性方法的构造
  • 批准号:
    2327484
  • 财政年份:
    2024
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Standard Grant
DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
  • 批准号:
    EP/Y030990/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Research Grant
Linear Response and Koopman Modes: Prediction and Criticality - LINK
线性响应和库普曼模式:预测和临界性 - LINK
  • 批准号:
    EP/Y026675/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Research Grant
Structural Performance Analysis of a Floating Green Energy Storage Subjected to Non-Linear Loads
非线性载荷下浮动绿色储能结构性能分析
  • 批准号:
    2902122
  • 财政年份:
    2024
  • 资助金额:
    $ 10.5万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了