Multiscale Analysis of Hyperbolic Partial Differential Equations

双曲偏微分方程的多尺度分析

基本信息

项目摘要

The research supported by this award concerns the qualitative behavior of solutions of linear and nonlinear hyperbolic partial differential equations. Such equations describe wave propagation in situations when signals travel at finite speed, e.g. acoustics, electromagnetism, compressible fluids, ... etc. The first set of problems concerns nonlinear internal layers. Such layers represent waves which have wave fronts occupying a very thin region about a smooth surface in space time. The wave front separates regions where the values of the solution are quite different. The examples of propagating flame fronts and reaction fronts give the idea. The mathematical results will lead to algorithms for approximations whose error tends to zero as the width decreases. The problem proposed is the behavior of planar layers at times which are large relative to the reciprocal of the width. One expects to see diffractive effects and there are virtually no known mathematical results for this type for layers. It is likely that there will be analogous results for weakly dissipative boundary layers. The second problems concern Berenger?s perfectly matched layer algorithms for the computation of wave propagation in unbounded domains. Careful analysis indicates that the layers are not perfectly matched. The detailed analysis of this phenomenon and its consequences is important given the wide use of these methods. The third family of problems concern situations where stability estimates are derived with the aid of pseudodifferential operators. Such operators spread supports which makes them seemingly inappropriate for the study of supports. The project proposes the study of sharp finite speed and uniqueness of the Cauchy problem at space like hypersurfaces for symmetrizable hyperbolic systems. Finally the propagation of short wavelength waves through perturbed periodic media will be studied when the period and wavelength are of comparable size. The interest is in propagation for long distances on which diffractive effects are expected to take place.This research project addresses questions that arise in mathematical models for wave propagation phenomena, i.e. physical situations in which signals can travel at finite speed and interact with one another and with the medium that they traverse. Such signals can take the form of wave fronts (such as the spherical light flash from a camera, sound waves made by clapping hands, or a flame front in a combustion engine) or of rays (as in optics), among others. There is a common class of mathematical models for such phenomena that has been employed very successfully in applications as diverse as chemical engineering, the design and use of radar equipment and ultrasound transceivers, computer graphics, and fiber optics. There are four parts to this project. The first will add to the understanding of models for wave fronts that interact. The second part will examine a very widely used computational method for wave phenomena in unbounded spatial regions (e.g. radar signals bouncing off a plane) and try to explain some anomalies that make this method less reliable than is generally assumed. In the third part, the proposer will establish that a wide class of models does indeed exhibit the finite signal speed in all possible situations. Finally, the fourth project aims at a better understanding of light signals that travel through photonic materials over long distances. The PI will continue his educational efforts through lecture series, published notes, counseling, mentoring of thesis students, and close contact with laboratories in engineering schools and industry.
该奖项支持的研究涉及线性和非线性双曲型偏微分方程解的定性行为。这样的方程描述了在信号以有限速度传播的情况下的波传播,例如声学、电磁学、可压缩流体等。第一组问题涉及非线性内部层。这样的层代表波,其波阵面在时空中占据光滑表面周围的非常薄的区域。波前将解的值完全不同的区域分开。传播火焰前锋和反应前锋的例子给出了这个想法。数学结果将导致算法的近似误差趋于零的宽度减少。所提出的问题是平面层在相对于宽度的倒数较大的时间的行为。人们期望看到衍射效应,并且实际上对于这种类型的层没有已知的数学结果。对于弱耗散边界层,很可能会有类似的结果。第二个问题涉及Berenger?的完美匹配层算法计算波在无界区域的传播。仔细分析表明,这些层并不完全匹配。鉴于这些方法的广泛使用,对这一现象及其后果进行详细分析十分重要。第三类问题涉及的情况下,稳定性估计的援助,pseudodifferential运营商。这样的操作符传播支持,这使得他们似乎不适合支持的研究。该项目提出了尖锐的有限速度和唯一性的柯西问题的研究空间一样的超曲面对称双曲系统。最后,当周期和波长相当时,研究了短波通过扰动周期介质的传播。该研究项目的目的是研究预期会发生衍射效应的长距离传播,研究波传播现象的数学模型中出现的问题,即信号可以以有限速度传播并相互作用以及与它们穿过的介质相互作用的物理情况。这些信号可以采取波前的形式(例如来自相机的球形闪光,拍手产生的声波或内燃机中的火焰前沿)或光线(如光学)等。有一类常见的数学模型已经非常成功地应用于化学工程、雷达设备和超声波收发器的设计和使用、计算机图形学和光纤等各种应用中。这个项目有四个部分。第一个将增加对相互作用的波前模型的理解。第二部分将研究一种非常广泛使用的计算方法,用于无界空间区域中的波动现象(例如雷达信号从飞机上反弹),并试图解释一些异常现象,这些异常现象使这种方法比通常假设的更不可靠。在第三部分中,提议者将建立一个广泛的类别的模型确实表现出有限的信号速度在所有可能的情况下。最后,第四个项目旨在更好地了解长距离通过光子材料传播的光信号。PI将通过系列讲座,出版笔记,咨询,指导论文学生以及与工程学校和工业实验室的密切联系继续他的教育工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Rauch其他文献

Instability of Dielectrics and Conductors in Electrostatic Fields
Euclidean nonlinear classical field equations with unique vacuum
Intuitive and Counterintuitive Energy Flux

Jeffrey Rauch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Rauch', 18)}}的其他基金

Applied Hyperbolic Partial Differential Equations
应用双曲偏微分方程
  • 批准号:
    0405899
  • 财政年份:
    2004
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Nonlinear Geometric Optics
非线性几何光学
  • 批准号:
    0104096
  • 财政年份:
    2001
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Qualitative Behavior of Nonlinear Hyperbolic Waves
非线性双曲波的定性行为
  • 批准号:
    9803296
  • 财政年份:
    1998
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Prmblems In Linear & Nonlinear Wave Motion
线性问题
  • 批准号:
    9500823
  • 财政年份:
    1995
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
U.S.-France Cooperative Research: Nonlinear Geometric Optics
美法合作研究:非线性几何光学
  • 批准号:
    9314095
  • 财政年份:
    1994
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Problems in Linear and Nonlinear WaveMotion
数学科学:线性和非线性波动问题
  • 批准号:
    9203413
  • 财政年份:
    1992
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Penalization Techniques for the Studyof Free and Moving Boundaries
数学科学:研究自由边界和移动边界的惩罚技术
  • 批准号:
    9003256
  • 财政年份:
    1990
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Linear and Nonlinear Wave Motion
数学科学:线性和非线性波动
  • 批准号:
    8902387
  • 财政年份:
    1989
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Research Equipment
数学科学研究设备
  • 批准号:
    8704372
  • 财政年份:
    1987
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Problems in Linear and Nonlinear WaveMotion
数学科学:线性和非线性波动问题
  • 批准号:
    8601783
  • 财政年份:
    1986
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
  • 批准号:
    41601604
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
  • 批准号:
    31100958
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
  • 批准号:
    30470153
  • 批准年份:
    2004
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目

相似海外基金

Microlocal Analysis and Hyperbolic Dynamics
微局域分析和双曲动力学
  • 批准号:
    2400090
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
  • 批准号:
    24K06777
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical analysis of the initial value boundary value problem of viscous flows with hyperbolic effects
具有双曲效应的粘性流初值边值问题的数学分析
  • 批准号:
    22K03374
  • 财政年份:
    2022
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of new dissipative structure and exploration of general stability analysis method for symmetric hyperbolic system
新耗散结构的阐明及对称双曲系统一般稳定性分析方法的探索
  • 批准号:
    21K13818
  • 财政年份:
    2021
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
New developments in mathematical analysis of spatio-temporal nonuniform dynamics in quasilinear hyperbolic-parabolic conservation laws
拟线性双曲-抛物线守恒定律时空非均匀动力学数学分析新进展
  • 批准号:
    20H00118
  • 财政年份:
    2020
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Discontinuous Galerkin Isogeometric Analysis of Hyperbolic PDEs
双曲偏微分方程的不连续伽辽金等几何分析
  • 批准号:
    552071-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 28.5万
  • 项目类别:
    University Undergraduate Student Research Awards
Discontinuous Galerkin Isogeometric Analysis of Hyperbolic PDEs
双曲偏微分方程的不连续伽辽金等几何分析
  • 批准号:
    526316-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 28.5万
  • 项目类别:
    University Undergraduate Student Research Awards
Hyperbolic threshold dynamics: applications and analysis
双曲阈值动力学:应用与分析
  • 批准号:
    17K14229
  • 财政年份:
    2017
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Null structure and high frequency asymptotic analysis for nonlinear hyperbolic and dispersive equations
非线性双曲和色散方程的零结构和高频渐近分析
  • 批准号:
    17K05322
  • 财政年份:
    2017
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of non-hyperbolic systems through theories and numerical analysis
通过理论和数值分析分析非双曲系统
  • 批准号:
    16K17609
  • 财政年份:
    2016
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了