Nonlinear Geometric Optics
非线性几何光学
基本信息
- 批准号:0104096
- 负责人:
- 金额:$ 12.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-15 至 2005-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mathematical Sciences: Nonlinear Geometric Optics0104096RauchThe project concerns the development and analysis of new asymptotic methods to study short wavelength solutions of nonlinear hyperbolic partial differential equations. Short wavelength asymptotics, also known as geometric optics, is one of the most penetrating and widely applicable methods for analyzing partial differential equations. Traditionally applied to linear problems, the method has recently been employed to furnish rigorous results in the nonlinear context. This project continues the development of the method for treatment of nonlinear problems. Special emphasis is placed on analysis of solutions that model ultrashort laser pulses and on the behavior of both wave trains and pulses upon crossing focal points.This project develops new mathematical tools to describe the propagation of waves whose form is that of short pulses. The technique, called asymptotic analysis, studies such pulses in the limit as the wavelength of the pulse becomes shorter and shorter. In such limiting situations, much can be learned about solutions of the underlying equations, which express physical laws such as Newton's second law for fluids or the laws of electromagnetism. This project develops the technique to analyze important nonlinear equations that arise in a variety of applications. Special attention is given to diffractive effects that occur when rays of geometric optics stay close together for long times, and to the effects that occur when pulses focus in a nonlinear regime. Promising preliminary results show that standard numerical techniques can be improved in both accuracy and simplicity. The results of this project will yield reliable procedures for numerical simulations of important physical systems, including lasers that produce ultrashort pulses.
数学科学:非线性几何光学[0104096 . rauch]该项目涉及研究非线性双曲型偏微分方程短波解的新渐近方法的发展和分析。短波长的渐近性,也被称为几何光学,是分析偏微分方程最具穿透力和广泛应用的方法之一。该方法传统上应用于线性问题,最近被用于在非线性环境中提供严格的结果。这个项目继续发展处理非线性问题的方法。特别强调了对超短激光脉冲模型的解的分析,以及波列和脉冲在穿过焦点时的行为。这个项目开发了新的数学工具来描述波的传播,其形式是短脉冲。这种被称为渐近分析的技术,是在脉冲波长越来越短的极限下研究这种脉冲。在这种极限情况下,可以学到很多关于基本方程的解,这些方程表达了物理定律,如牛顿流体第二定律或电磁学定律。这个项目发展了分析在各种应用中出现的重要非线性方程的技术。特别注意了当几何光学射线长时间保持在一起时发生的衍射效应,以及当脉冲聚焦在非线性状态时发生的效应。有希望的初步结果表明,标准数值技术可以提高精度和简单性。该项目的结果将为重要物理系统的数值模拟提供可靠的程序,包括产生超短脉冲的激光器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Rauch其他文献
Instability of Dielectrics and Conductors in Electrostatic Fields
- DOI:
10.1007/s00205-016-1073-0 - 发表时间:
2016-12-27 - 期刊:
- 影响因子:2.400
- 作者:
Grégoire Allaire;Jeffrey Rauch - 通讯作者:
Jeffrey Rauch
Euclidean nonlinear classical field equations with unique vacuum
- DOI:
10.1007/bf02156127 - 发表时间:
1978-10-01 - 期刊:
- 影响因子:2.600
- 作者:
Jeffrey Rauch;David N. Williams - 通讯作者:
David N. Williams
Intuitive and Counterintuitive Energy Flux
- DOI:
10.1007/s00205-004-0327-4 - 发表时间:
2004-07-26 - 期刊:
- 影响因子:2.400
- 作者:
Jeffrey Rauch - 通讯作者:
Jeffrey Rauch
Jeffrey Rauch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Rauch', 18)}}的其他基金
Multiscale Analysis of Hyperbolic Partial Differential Equations
双曲偏微分方程的多尺度分析
- 批准号:
0807600 - 财政年份:2008
- 资助金额:
$ 12.3万 - 项目类别:
Continuing Grant
Applied Hyperbolic Partial Differential Equations
应用双曲偏微分方程
- 批准号:
0405899 - 财政年份:2004
- 资助金额:
$ 12.3万 - 项目类别:
Continuing Grant
Qualitative Behavior of Nonlinear Hyperbolic Waves
非线性双曲波的定性行为
- 批准号:
9803296 - 财政年份:1998
- 资助金额:
$ 12.3万 - 项目类别:
Continuing Grant
Prmblems In Linear & Nonlinear Wave Motion
线性问题
- 批准号:
9500823 - 财政年份:1995
- 资助金额:
$ 12.3万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Nonlinear Geometric Optics
美法合作研究:非线性几何光学
- 批准号:
9314095 - 财政年份:1994
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant
Mathematical Sciences: Problems in Linear and Nonlinear WaveMotion
数学科学:线性和非线性波动问题
- 批准号:
9203413 - 财政年份:1992
- 资助金额:
$ 12.3万 - 项目类别:
Continuing Grant
Mathematical Sciences: Penalization Techniques for the Studyof Free and Moving Boundaries
数学科学:研究自由边界和移动边界的惩罚技术
- 批准号:
9003256 - 财政年份:1990
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant
Mathematical Sciences: Linear and Nonlinear Wave Motion
数学科学:线性和非线性波动
- 批准号:
8902387 - 财政年份:1989
- 资助金额:
$ 12.3万 - 项目类别:
Continuing Grant
Mathematical Sciences Research Equipment
数学科学研究设备
- 批准号:
8704372 - 财政年份:1987
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant
Mathematical Sciences: Problems in Linear and Nonlinear WaveMotion
数学科学:线性和非线性波动问题
- 批准号:
8601783 - 财政年份:1986
- 资助金额:
$ 12.3万 - 项目类别:
Continuing Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
- 批准号:
2246606 - 财政年份:2023
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant
Collaborative Research: Parabolic Monge-Ampère Equations, Computational Optimal Transport, and Geometric Optics
合作研究:抛物线 Monge-AmpeÌre 方程、计算最优传输和几何光学
- 批准号:
2246611 - 财政年份:2023
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant
Excellence in Research: Optimal Transport and Freeform Refractive Surfaces in Geometric Optics
卓越的研究:几何光学中的最佳传输和自由形状折射表面
- 批准号:
2200589 - 财政年份:2022
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant
CAREER: Generated Jacobian Equations in Geometric Optics and Optimal Transport
职业:生成几何光学和最优传输中的雅可比方程
- 批准号:
1751996 - 财政年份:2018
- 资助金额:
$ 12.3万 - 项目类别:
Continuing Grant
Research Initiation Award: Mathematical Modeling On the Geometric Optics Problem of Refraction
研究启动奖:折射几何光学问题的数学建模
- 批准号:
1700236 - 财政年份:2017
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant
OP: Variational Principles, Minimization Diagrams, and Mixed Finite Elements in Computational Geometric Optics
OP:计算几何光学中的变分原理、最小化图和混合有限元
- 批准号:
1720276 - 财政年份:2017
- 资助金额:
$ 12.3万 - 项目类别:
Continuing Grant
OP: Monge-Ampere type equations and geometric optics
OP:Monge-Ampere 型方程和几何光学
- 批准号:
1600578 - 财政年份:2016
- 资助金额:
$ 12.3万 - 项目类别:
Continuing Grant
Monge-Ampere-type equations and geometric optics
Monge-Ampere型方程和几何光学
- 批准号:
1201401 - 财政年份:2012
- 资助金额:
$ 12.3万 - 项目类别:
Continuing Grant
Geometric Analysis, Wave Optics, and Geometric Gravity Models
几何分析、波动光学和几何重力模型
- 批准号:
0707003 - 财政年份:2007
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant
Geometric PDE's and Monge-Kantorovich Theory in Problems of Optics and Differential Geometry
光学和微分几何问题中的几何偏微分方程和蒙日-康托罗维奇理论
- 批准号:
0405622 - 财政年份:2004
- 资助金额:
$ 12.3万 - 项目类别:
Standard Grant