Qualitative Behavior of Nonlinear Hyperbolic Waves

非线性双曲波的定性行为

基本信息

项目摘要

The research under this award is devoted to the study of solutions of nonlinearpartial differential equations which model the propagation of waves such as light waves and sound waves. These phenomena do not have viscous effects which means that the differential equations are of hyperbolic type. The mathematicalanalysis provides new rigorous error estimates for exact solutions and approximate solutions that are valid in the limit of short wavelengths. Particular emphasis is placed on problems of nonlinear optics. Four main problem areas are addressed. The first is the investigation of qualitative properties of three nonlinearmodels. The basic question is whether these models predict singularity formation or not.In the second area, reliable approximate solutions for nonlinear optics problemswill be constructed that are valid for larger amplitudes than previously possible.To do so requires hypotheses for the nonlinear interaction terms which are verifiedin many practical models. The third problem is to investigate the effects of strongnonlinearity at focal points. The fourth problem area is to construct approximate solutions with error estimates for equations that describe ultra short laser propagation.The research that is supported by this award focuses on mathematical models for wave propagation phenomena, specifically on high frequency phenomena such as light waves andacoustic waves. The results from this research can be used to validate current models for such phenomena, predict new effects, and help in the design of new equipment. Much of this work is motivated by problems for ultra intense lasers and optical parametric oscillators where difficulties with modeling and design have been encountered.The mathematical investigations will allow to predict situations in which optical devicesbecome unstable or are damaged.
该奖项下的研究致力于研究非线性偏微分方程的解,该方程模拟光波和声波等波的传播。 这些现象没有粘性效应,这意味着微分方程是双曲型的。 理论分析为精确解和近似解提供了新的严格的误差估计,这些误差估计在短波长范围内是有效的。 特别强调的是放在非线性光学问题。 四个主要问题领域得到解决。 第一部分研究了三种非线性模型的定性性质。 基本的问题是这些模型是否预测奇异性的形成。在第二个领域,非线性光学问题的可靠的近似解将被构造为比以前可能的更大的振幅是有效的。要做到这一点,需要对非线性相互作用项进行假设,这些假设在许多实际模型中得到了验证。 第三个问题是研究焦点处强非线性的影响。 第四个问题领域是为描述超短激光传播的方程构造具有误差估计的近似解。该奖项支持的研究重点是波传播现象的数学模型,特别是光波和声波等高频现象。 这项研究的结果可用于验证此类现象的当前模型,预测新的影响,并帮助设计新设备。 大部分的工作是出于对超强激光器和光学参量振荡器的建模和设计困难的问题,数学研究将允许预测的情况下,光学器件变得不稳定或损坏。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Rauch其他文献

Instability of Dielectrics and Conductors in Electrostatic Fields
Euclidean nonlinear classical field equations with unique vacuum
Intuitive and Counterintuitive Energy Flux

Jeffrey Rauch的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Rauch', 18)}}的其他基金

Multiscale Analysis of Hyperbolic Partial Differential Equations
双曲偏微分方程的多尺度分析
  • 批准号:
    0807600
  • 财政年份:
    2008
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Continuing Grant
Applied Hyperbolic Partial Differential Equations
应用双曲偏微分方程
  • 批准号:
    0405899
  • 财政年份:
    2004
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Continuing Grant
Nonlinear Geometric Optics
非线性几何光学
  • 批准号:
    0104096
  • 财政年份:
    2001
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Continuing Grant
Prmblems In Linear & Nonlinear Wave Motion
线性问题
  • 批准号:
    9500823
  • 财政年份:
    1995
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Continuing Grant
U.S.-France Cooperative Research: Nonlinear Geometric Optics
美法合作研究:非线性几何光学
  • 批准号:
    9314095
  • 财政年份:
    1994
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Problems in Linear and Nonlinear WaveMotion
数学科学:线性和非线性波动问题
  • 批准号:
    9203413
  • 财政年份:
    1992
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Penalization Techniques for the Studyof Free and Moving Boundaries
数学科学:研究自由边界和移动边界的惩罚技术
  • 批准号:
    9003256
  • 财政年份:
    1990
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Linear and Nonlinear Wave Motion
数学科学:线性和非线性波动
  • 批准号:
    8902387
  • 财政年份:
    1989
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Research Equipment
数学科学研究设备
  • 批准号:
    8704372
  • 财政年份:
    1987
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Problems in Linear and Nonlinear WaveMotion
数学科学:线性和非线性波动问题
  • 批准号:
    8601783
  • 财政年份:
    1986
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Continuing Grant

相似国自然基金

greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Large time behavior of solutions to nonlinear hyperbolic and dispersive equations with weakly dissipative structure
弱耗散结构非线性双曲和色散方程解的大时间行为
  • 批准号:
    22KJ2801
  • 财政年份:
    2023
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Investigation of nonlinear behavior in an electric and non-Newtonian jet in an air crossflow
研究空气横流中电动和非牛顿射流的非线性行为
  • 批准号:
    23H01746
  • 财政年份:
    2023
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
On the Long Time Behavior of Nonlinear Dispersive Equations
非线性色散方程的长期行为
  • 批准号:
    2306429
  • 财政年份:
    2023
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Long-time behavior for nonlinear dispersive equations
LEAPS-MPS:非线性色散方程的长时间行为
  • 批准号:
    2350225
  • 财政年份:
    2023
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Standard Grant
Research on the behavior of solutions to nonlinear Schrodinger equations of non-conserved models
非守恒模型非线性薛定谔方程解的行为研究
  • 批准号:
    23K03168
  • 财政年份:
    2023
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on behavior of solutions and the well-posedness for the nonlinear dispersive system in plasma physics
等离子体物理中非线性色散系统解的行为及适定性研究
  • 批准号:
    23KJ2028
  • 财政年份:
    2023
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: Spatial and Dynamic Heterogeneity and Nonlinear Viscoelastic Constitutive Behavior of Glasses and Their Nanocomposites as Probed by Nonlinear Spectroscopies
合作研究:非线性光谱探测玻璃及其纳米复合材料的空间和动态异质性以及非线性粘弹性本构行为
  • 批准号:
    2219327
  • 财政年份:
    2022
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Standard Grant
Asymptotic analysis and behavior of free boundary for nonlinear parabolic problems
非线性抛物线问题的渐近分析和自由边界行为
  • 批准号:
    22K03387
  • 财政年份:
    2022
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
LEAPS-MPS: Long-time behavior for nonlinear dispersive equations
LEAPS-MPS:非线性色散方程的长时间行为
  • 批准号:
    2137217
  • 财政年份:
    2022
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Standard Grant
Quantitative analysis of polarization and charge behavior at the interface of organic devices by nonlinear optical spectroscopy.
通过非线性光谱定量分析有机器件界面的偏振和电荷行为。
  • 批准号:
    22H02048
  • 财政年份:
    2022
  • 资助金额:
    $ 12.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了