Mathematical Sciences: New Results in Sampling and Wavelet Applications in Tomography

数学科学:断层扫描中采样和小波应用的新结果

基本信息

  • 批准号:
    9500909
  • 负责人:
  • 金额:
    $ 4.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1995
  • 资助国家:
    美国
  • 起止时间:
    1995-09-01 至 1999-08-31
  • 项目状态:
    已结题

项目摘要

9500909 Walnut The project consists of two parts. First, the investigator proposes to apply new results in sampling theory to do high-resolution signal processing by combining several low-resolution versions of a given signal. It was observed by Berenstein and others that a mathematical model of this problem (called multisensor deconvolution) is uniquely solvable but ill- posed, and difficult to solve numerically. The investigator has found Shannon-type sampling formulas on unions of regular lattices with incommensurate densities, which provide simple solutions to the multichannel deconvolution problem in special cases. The following applications are envisioned: 1) Sharpening measurements taken by CT scanners by combining measurements from several low-resolution detectors. This could ultimately lead to inexpensive measuring devices with resolution comparable to expensive high-resolution machines. 2) A recently proposed scheme to increase resolution in an industrial tomography problem involves sampling on unions of regular grids of incommensurate size. The investigator's sampling results could lead to a complete solution to this problem. 3) New techniques are required to do "superresolution" in electronic imaging since the theoretical limit of pixel resolution is rapidly being reached. Deconvolution at high-resolution of several low-resolution images is a natural approach to this problem. Second, the investigator and others have successfully shown that wavelets are a natural tool for recovering edge features of an image from local Radon transform data. The investigator proposes to develop these local algorithms with the following goals envisioned: 1) Find ways to recover locally density as well as edge features of an image, and develop an algorithm competitive with existing local tomography algorithms and 2) Identify the wavefront set of an image using wavelets, and ultimately apply the techniques to the at tenuated Radon transform. The first part of the project is concerned with increasing the resolution of remote sensing devices such as electronic cameras. Suppose, for example, that a CCD camera has a resolution of 1 millimeter, that is, it can distinguish features of a scene that are at least 1 mm on a side. Features smaller than that are blurred into their surroundings. Berenstein and others observed that some classical mathematics led to a possible way to increase resolution without designing an expensive high-resolution device. If one took several images of the scene with cameras identical to the first but which had slightly poorer resolutions than the first (this could also be achieved by repositioning the same camera), then in theory one could recover features of the original scene to arbitrary resolution. In practice, arbitrary resolution is not possible, but it seems that real increases in resolution can be achieved. The investigator has formulated an approach to this problem from the point of view of sampling theory. Using this approach, the investigator has been able to produce numerically stable twenty-fold increases in resolution in a one-dimensional model problem. More work is required, but the following applications are envisioned: 1) Producing high-resolution measurements from CT scanners by combining the measurements from several low-resolution scanners and 2) Increasing the resolution in a specific industrial tomography problem by a direct application of the investigator's new sampling results. The second part of the project is concerned with "local" CT scans. In existing CT scanners, an entire slice of a patient's body must be exposed to radiation even if the doctor is interested in looking at only a small region. The investigator proposes to use a new and powerful signal processing technique called wavelets to find efficient algorithms for obtaining an image of a small area of a patient's body while only exposing the area of interest to radiation. It is hoped that these techniques will be competitive with existing so-called local tomography algorithms.
9500909核桃本项目由两部分组成。首先,研究者建议将采样理论中的新结果应用于高分辨率信号处理,通过结合给定信号的几个低分辨率版本。Berenstein等人观察到,这个问题的数学模型(称为多传感器反褶积)是唯一可解的,但不适定式,难以在数值上求解。研究者发现了密度不相等的规则格并的香农型抽样公式,为特殊情况下的多通道反褶积问题提供了简单的解。设想以下应用:1)结合几个低分辨率探测器的测量结果,通过CT扫描仪进行锐化测量。这可能最终导致廉价的测量设备的分辨率可与昂贵的高分辨率机器相媲美。最近提出的一种提高工业层析成像问题分辨率的方案涉及对大小不相称的规则网格的联合进行采样。调查人员的抽样结果可以彻底解决这个问题。3)电子成像的“超分辨率”需要新技术,因为像素分辨率的理论极限正在迅速达到。多幅低分辨率图像的高分辨率反卷积是解决该问题的一种自然方法。其次,研究者和其他人已经成功地证明了小波是从局部Radon变换数据中恢复图像边缘特征的天然工具。研究者提出开发这些局部算法的目标如下:1)找到恢复局部密度和图像边缘特征的方法,并开发一种与现有局部层析成像算法竞争的算法;2)使用小波识别图像的波前集,并最终将这些技术应用于弱Radon变换。该项目的第一部分涉及提高电子相机等遥感设备的分辨率。例如,假设CCD相机的分辨率为1毫米,也就是说,它可以区分场景的一侧至少为1毫米的特征。比这更小的特征被模糊到周围的环境中。贝伦斯坦和其他人观察到,一些经典的数学方法可以在不设计昂贵的高分辨率设备的情况下提高分辨率。如果有人用与第一张相同的相机拍摄了几张场景图像,但分辨率略低于第一张(这也可以通过重新定位相同的相机来实现),那么理论上他可以恢复原始场景的特征到任意分辨率。在实践中,任意分辨率是不可能的,但似乎可以实现分辨率的实际增加。研究者从抽样理论的角度阐述了解决这个问题的方法。使用这种方法,研究者已经能够在一维模型问题中产生数值稳定的二十倍分辨率增加。虽然还需要做更多的工作,但可以设想以下应用:1)通过结合几个低分辨率扫描仪的测量结果,从CT扫描仪产生高分辨率测量结果;2)通过直接应用研究者的新采样结果,提高特定工业断层扫描问题的分辨率。该项目的第二部分涉及“局部”CT扫描。在现有的CT扫描仪中,即使医生只对一小部分感兴趣,病人身体的整个切片也必须暴露在辐射下。研究人员建议使用一种新的强大的信号处理技术,称为小波,以找到有效的算法,在只将感兴趣的区域暴露于辐射的情况下获得患者身体一小部分的图像。希望这些技术将与现有的所谓的局部断层扫描算法竞争。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 4.79万
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 4.79万
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    $ 4.79万
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 4.79万
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 4.79万
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 4.79万
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 4.79万
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 4.79万
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    $ 4.79万
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 4.79万
  • 项目类别:
    Studentship

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

New Trends in Localized Patterns in Partial Differential Equations: Mathematical Theory and Applications to Physics, Biology, and the Social Sciences
偏微分方程定域模式的新趋势:数学理论及其在物理、生物学和社会科学中的应用
  • 批准号:
    2013192
  • 财政年份:
    2020
  • 资助金额:
    $ 4.79万
  • 项目类别:
    Standard Grant
New modeling and mathematical analysis for pattern formations in life sciences
生命科学中模式形成的新建模和数学分析
  • 批准号:
    18H01139
  • 财政年份:
    2018
  • 资助金额:
    $ 4.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
EPSRC Centre for New Mathematical Sciences Capabilities for Healthcare Technologies
EPSRC 医疗保健技术新数学科学能力中心
  • 批准号:
    EP/N014499/1
  • 财政年份:
    2015
  • 资助金额:
    $ 4.79万
  • 项目类别:
    Research Grant
CBMS Regional Conference in the Mathematical Sciences - "Families of Riemann surfaces and Weil-Petersson Geometry'' - Summer 2009; New Britain, CT
CBMS 数学科学区域会议 -“黎曼曲面家族和 Weil-Petersson 几何” - 2009 年夏季;康涅狄格州新不列颠
  • 批准号:
    0834134
  • 财政年份:
    2009
  • 资助金额:
    $ 4.79万
  • 项目类别:
    Standard Grant
"NEW: GK-12" Graduate Students and Teacher Engaging in Mathematical Sciences (G-Teams)
“新:GK-12”从事数学科学的研究生和教师(G-Teams)
  • 批准号:
    0841234
  • 财政年份:
    2009
  • 资助金额:
    $ 4.79万
  • 项目类别:
    Continuing Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - New Perspectives for Boundary Value Problems and Their Asymptotics; May 16-20, 2005; Edinburg, TX
NSF/CBMS 数学科学区域会议 - 边值问题及其渐近问题的新视角;
  • 批准号:
    0433445
  • 财政年份:
    2005
  • 资助金额:
    $ 4.79万
  • 项目类别:
    Standard Grant
NSF-CBMS Regional Conference in Mathematical Sciences: New Horizons in Multiple Comparison Procedures August 13-17, 2001
NSF-CBMS 数学科学区域会议:多重比较程序的新视野 2001 年 8 月 13-17 日
  • 批准号:
    0086140
  • 财政年份:
    2000
  • 资助金额:
    $ 4.79万
  • 项目类别:
    Standard Grant
Mathematical Sciences/GIG: New Multidisciplinary Directions in Applied Mathematics Reserach & Teaching at MIT (Group Infrastructure Grant)
数学科学/GIG:应用数学研究的新的多学科方向
  • 批准号:
    9709607
  • 财政年份:
    1997
  • 资助金额:
    $ 4.79万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Knot Theory: New Invariants and TheirTopology
数学科学:纽结理论:新不变量及其拓扑
  • 批准号:
    9796130
  • 财政年份:
    1997
  • 资助金额:
    $ 4.79万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Third North American Conference of New Researchers in Statistics and Probability; July 23-26, 1997; Laramie, Wyoming
数学科学:第三届北美统计与概率新研究者会议;
  • 批准号:
    9615340
  • 财政年份:
    1997
  • 资助金额:
    $ 4.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了