Mathematical Sciences: p-adic Automorphic Forms

数学科学:p进自守形式

基本信息

  • 批准号:
    9500941
  • 负责人:
  • 金额:
    $ 6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1995
  • 资助国家:
    美国
  • 起止时间:
    1995-06-15 至 1999-05-31
  • 项目状态:
    已结题

项目摘要

This research involves the study of p-adic symmetric spaces, the arithmetic of modular forms, and a number of computational and algorithmic questions in number theory and algebraic geometry. In the general area of p-adic automorphic forms, known results about the relationship between analytic functions and measures on the p-adic upper half plane and measures on its boundary are generalized to Drinfeld's higher dimensional p-adic upper half spaces. Such results have implications for the geometry of algebraic varieties which are uniformized by the Drinfeld spaces, including certain Shimura varieties and Drinfeld modular varieties. They also have important consequences for the p-adic representation theory of the general linear group. In the area of modular forms, the principal investigator is continuing to study questions relating to the "exceptional zero conjecture". Finally, earlier work on algorithms for computing Picard-Fuchs differential equations and the Gauss-Manin connection are extended. The research in this project lies in the general areas of arithmetic geometry and automorphic forms. Algebraic geometry is one of the oldest parts of modern mathematics. In the past ten years, it has blossomed to the point where it has solved problems that have stood for centuries. Originally, it treated figures in the plane defined by the simplest of equations, namely polynomials. Today, the field utilizes methods not only from algebra, but also from analysis and topology; conversely, it is extensively used in those fields. Moreover, it has proved itself useful in fields as diverse as physics, theoretical computer science, cryptography, coding theory and robotics. Automorphic forms arose out of non-Euclidean geometry in the middle of the nineteenth century. Both mathematicians and physicists have thus long realized that many objects of fundamental importance are non-Euclidean in their basic nature. This field is principally concerned with questions about the whole numbe rs, but in its use of geometry and analysis, it retains connection to its historical roots and thus to problems in areas as diverse as gauge theory in theoretical physics and coding theory in information theory. This research involves the study of p-adic symmetric spaces, the arithmetic of modular forms, and a number of computational and algorithmic questions in number theory and algebraic geometry. In the general area of p-adic automorphic forms, known results about the relationship between analytic functions and measures on the p-adic upper half plane and measures on its boundary are generalized to Drinfeld's higher dimensional p-adic upper half spaces. Such results hate implications for the geometry of algebraic varieties which are uniformized by the Drinfeld spaces, including certain Shimura varieties and Drinfeld modular varieties. They also have important consequences for the p-adic representation theory of the general linear group. In the area of modular forms, the principal investigator is continuing to study questions relating to the "exceptional zero conjecture". Finally, earlier work on algorithms for computing Picard-Fuchs differential equations and the Gauss-Manin connection are extended. The research in this project lies in the general areas of arithmetic geometry and automorphic forms. Algebraic geometry is one of the oldest parts of modern mathematics. In the past ten years, it has blossomed to the point where it has solved problems that have stood for centuries. Originally, it treated figures in the plane defined by the simplest of equations, namely polynomials. Today, the field utilizes methods not only from algebra, but also from analysis and topology; conversely, it is extensively used in those fields. Moreover, it has proved itself useful in fields as diverse as physics, theoretical computer science, cryptography, coding theory and robotics. Automorphic forms arose out of non-Euclidean geometry in the middle of the nineteenth century. B oth mathematicians and physicists have thus long realized that many objects of fundamental importance are non-Euclidean in their basic nature. This field is principally concerned with questions about the whole numbers, but in its use of geometry and analysis, it retains connection to its historical roots and thus to problems in areas as diverse as gauge theory in theoretical physics and coding theory in information theory.
这项研究涉及研究的p-adic对称空间,算术的模块化形式,以及一些计算和算法的问题,在数论和代数几何。在p-adic自守形式的一般领域中,将关于p-adic上半平面上的解析函数与测度及其边界上的测度之间关系的已知结果推广到了Drinfeld的高维p-adic上半空间.这样的结果有影响的几何代数簇是一致的德林费尔德空间,包括某些志村品种和德林费尔德模品种。它们也对一般线性群的p-adic表示理论产生了重要的影响。在模形式领域,首席研究员正在继续研究与“例外零猜想”有关的问题。最后,以前的工作算法计算皮卡德-富克斯微分方程和高斯-马宁连接的扩展。 本计画的研究范围为算术几何与自守形式的一般领域。代数几何是现代数学中最古老的部分之一。在过去的十年里,它已经发展到解决了几个世纪以来一直存在的问题。最初,它处理的是由最简单的方程(即多项式)定义的平面中的图形。今天,该领域不仅利用代数方法,而且还利用分析和拓扑学方法;相反,它在这些领域中得到了广泛的应用。此外,它已被证明在物理学、理论计算机科学、密码学、编码理论和机器人技术等不同领域都很有用。自守形式产生于世纪中期的非欧几里德几何。因此,数学家和物理学家早就认识到,许多具有根本重要性的对象在其基本性质上是非欧几里德的。这一领域主要关注关于整数的问题,但在几何和分析的应用中,它保留了与其历史根源的联系,从而与理论物理中的规范理论和信息论中的编码理论等不同领域的问题保持联系。 这项研究涉及研究的p-adic对称空间,算术的模块化形式,以及一些计算和算法的问题,在数论和代数几何。在p-adic自守形式的一般领域中,将关于p-adic上半平面上的解析函数与测度及其边界上的测度之间关系的已知结果推广到了Drinfeld的高维p-adic上半空间.这样的结果讨厌的影响几何代数簇是一致的德林费尔德空间,包括某些志村品种和德林费尔德模品种。它们也对一般线性群的p-adic表示理论产生了重要的影响。在模形式领域,首席研究员正在继续研究与“例外零猜想”有关的问题。最后,以前的工作算法计算皮卡德-富克斯微分方程和高斯-马宁连接的扩展。 本计画的研究范围为算术几何与自守形式的一般领域。代数几何是现代数学中最古老的部分之一。在过去的十年里,它已经发展到解决了几个世纪以来一直存在的问题。最初,它处理由最简单的方程,即多项式定义的平面中的图形。今天,该领域不仅利用代数方法,而且还利用分析和拓扑学方法;相反,它在这些领域中得到了广泛的应用。此外,它已被证明在物理学、理论计算机科学、密码学、编码理论和机器人技术等不同领域都很有用。自守形式产生于世纪中期的非欧几里德几何。因此,B oth数学家和物理学家早就认识到,许多具有根本重要性的物体在其基本性质上是非欧几里德的。这一领域主要关注的是关于整数的问题,但在几何和分析的应用中,它保留了与其历史根源的联系,从而与理论物理中的规范理论和信息论中的编码理论等不同领域的问题保持联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeremy Teitelbaum其他文献

Jeremy Teitelbaum的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeremy Teitelbaum', 18)}}的其他基金

Towards a P-Adic Analytic Local Langlands Correspondence
迈向 P-Adic 分析局部朗兰信函
  • 批准号:
    0245410
  • 财政年份:
    2003
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Conference in Honor of A.O.L. Atkin: Computational Perspectives on Number Theory
数学科学:纪念 A.O.L. 的会议
  • 批准号:
    9503311
  • 财政年份:
    1995
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Mathematical Sciences Computing Research Environments
数学科学计算研究环境
  • 批准号:
    9304904
  • 财政年份:
    1993
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Problems in Arithmetic Geometry and Complexity Theory
数学科学:算术几何和复杂性理论问题
  • 批准号:
    9204265
  • 财政年份:
    1992
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Problems in Arithmetics Geometry and Complexity Theory
数学科学:算术几何和复杂性理论中的问题
  • 批准号:
    9015523
  • 财政年份:
    1990
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    8705971
  • 财政年份:
    1987
  • 资助金额:
    $ 6万
  • 项目类别:
    Fellowship Award

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Mathematical Sciences: Unipotent Representations of p-Adic Groups
数学科学:p-Adic 群的单能表示
  • 批准号:
    9896279
  • 财政年份:
    1998
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Unipotent Representations of p-Adic Groups
数学科学:p-Adic 群的单能表示
  • 批准号:
    9622343
  • 财政年份:
    1996
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
RUI: Mathematical Sciences: Spherical Characters on P-adic Coset Spaces and the Relative Trace Formula
RUI:数学科学:P-进陪集空间上的球面特征和相对迹公式
  • 批准号:
    9623125
  • 财政年份:
    1996
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Smooth Representations of Reductive P-Adic Groups via G-Types
数学科学:通过 G 类型平滑表示还原 P-Adic 群
  • 批准号:
    9623288
  • 财政年份:
    1996
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Representation Theory of p-adic Groups
数学科学:p进群的表示论
  • 批准号:
    9503140
  • 财政年份:
    1995
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Intersection Theory and P-adic Dynamical Systems
数学科学:交集理论和 P-adic 动力系统
  • 批准号:
    9500982
  • 财政年份:
    1995
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Representation Theory of Reductive P-adic Groups
数学科学:还原 P 进群的表示论
  • 批准号:
    9500970
  • 财政年份:
    1995
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Topics in the Model Theory of p-Adic Fields
数学科学:p-Adic 场模型论主题
  • 批准号:
    9401328
  • 财政年份:
    1995
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nevanlinna Error Terms and p-Adic Analytic Curves
数学科学:Nevanlinna 误差项和 p-Adic 解析曲线
  • 批准号:
    9505041
  • 财政年份:
    1995
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Representation Theory of Reductive P-Adic Groups
数学科学:还原 P-Adic 群的表示论
  • 批准号:
    9500973
  • 财政年份:
    1995
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了