Mathematical Sciences: The Joint Torsion of Koszul Complexes
数学科学:Koszul 复合体的联合扭转
基本信息
- 批准号:9501387
- 负责人:
- 金额:$ 9.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-07-01 至 1999-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9501387 Pincus The investigator is studying operator algebras. More specifically, he is studying what are known as Steinberg symbols, a generalization of multiplicative commutators in such algebras. Steinberg symbols are factored by means of a Koszul complex construction, and this gives rise to a new invariant, the joint torsion. This invariant is related to a local or maximal ideal index in the setting of commutative operator algebras, and it provides new understanding of the principal function in the non- commutative case. Similar constructions involving higher algebraic K-groups will also be investigated. The study of Wiener-Hopf integral equations began more than sixty years ago in connection with physical problems such as the diffraction of electromagnetic or sound waves. A natural operator W arises. The investigator's contributions began with the introduction of a naturally paired operator U for which a combination of the two operators known as the determinant took on a particularly simple and useful integral form. Using this determinant, he found that the study of the Wiener-Hopf operator W could be deepened, that new solutions could be found to the original integral equations, and that the study of functions h(W,U) of the pair of operators could be put into a new geometric context. This was an early step in development of the hugely successful new area of modern mathematics sometimes known as "non-commutative geometry." Now non-commutative geometry has drawn together several diverse areas of mathematics, and "algebraic K-theory" figures prominently among them. In the context of algebraic K-theory, the further analysis of the structure of the determinants mentioned above has led to a new object called the joint torsion of the pair {W,U}. This object in turn is linked to geometry in still another way and occurs in the study of differential equations and in the study of dynamical systems. ***
9501387平卡斯研究者正在研究算子代数。更具体地说,他正在研究所谓的斯坦伯格符号,这是这种代数中乘法对易子的一种推广。Steinberg符号通过Koszul复结构进行因式分解,这就产生了一个新的不变量,即关节扭转。该不变量与交换算子代数集合中的一个局部或极大理想指标有关,为非交换情况下的主函数提供了新的认识。涉及更高代数k群的类似构造也将被研究。对维纳-霍普夫积分方程的研究始于60多年前,与诸如电磁波或声波衍射之类的物理问题有关。自然算子W出现了。研究者的贡献始于引入自然配对算子U,其中两个算子的组合被称为行列式,采用了特别简单和有用的积分形式。利用这个行列式,他发现可以深化对维纳-霍普夫算子W的研究,可以找到原积分方程的新解,并且可以将对算子的函数h(W,U)的研究放到一个新的几何背景中。这是现代数学中非常成功的新领域发展的早期一步,有时被称为“非交换几何”。现在,非交换几何汇集了几个不同的数学领域,“代数k理论”在其中占有突出地位。在代数k理论的背景下,对上述行列式结构的进一步分析导致了一个新的对象,称为对{W,U}的联合扭转。这个对象又以另一种方式与几何联系在一起,出现在微分方程的研究和动力系统的研究中。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel Pincus其他文献
Perturbation vectors
- DOI:
10.1007/bf01193903 - 发表时间:
1999-09-01 - 期刊:
- 影响因子:0.900
- 作者:
Richard Carey;Joel Pincus - 通讯作者:
Joel Pincus
Contraction operators and principal currents
- DOI:
10.1007/bf01195781 - 发表时间:
1992-07-01 - 期刊:
- 影响因子:0.900
- 作者:
Joel Pincus;Shaojie Zhou - 通讯作者:
Shaojie Zhou
Mean motion, principal functions, and the zeros of dirichlet series
- DOI:
10.1007/bf01691074 - 发表时间:
1979-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Richard Carey;Joel Pincus - 通讯作者:
Joel Pincus
A remark on the spectral multiplicity of normal extensions of commuting subnormal operator tuples
- DOI:
10.1007/bf01196606 - 发表时间:
1993-03-01 - 期刊:
- 影响因子:0.900
- 作者:
Joel Pincus;Dechao Zheng - 通讯作者:
Dechao Zheng
Joel Pincus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel Pincus', 18)}}的其他基金
Mathematical Sciences: Principal Currents
数学科学:主电流
- 批准号:
9003069 - 财政年份:1990
- 资助金额:
$ 9.99万 - 项目类别:
Continuing Grant
Mathematical Sciences: Pure and Applied Operator Theory
数学科学:纯粹与应用算子理论
- 批准号:
8704684 - 财政年份:1987
- 资助金额:
$ 9.99万 - 项目类别:
Continuing Grant
Mathematical Sciences: Pure and Applied Operator Theory
数学科学:纯粹与应用算子理论
- 批准号:
8402827 - 财政年份:1984
- 资助金额:
$ 9.99万 - 项目类别:
Continuing Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
1997-1999 AMS-IMS-SIAM Joint Summer Research Conferences in the Mathematical Sciences
1997-1999 AMS-IMS-SIAM 数学科学联合夏季研究会议
- 批准号:
9618514 - 财政年份:1997
- 资助金额:
$ 9.99万 - 项目类别:
Continuing Grant
Mathematical Sciences: 1996 AMS-IMS-SIAM Joint Summer Research Conferences in the Mathematical Sciences; June-August 1996; South Hadley, MA
数学科学:1996 年 AMS-IMS-SIAM 数学科学联合夏季研究会议;
- 批准号:
9632966 - 财政年份:1996
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Mathematical Sciences: Joint 1996 Annual Spring Topology Conference and Southeast Dynamical Systems Conference
数学科学:联合 1996 年春季拓扑会议和东南动力系统会议
- 批准号:
9523768 - 财政年份:1996
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Mathematical Sciences: Joint Annual Spring Topology Conference and Southeast Dynamical Systems Conference
数学科学:联合年度春季拓扑会议和东南动力系统会议
- 批准号:
9317810 - 财政年份:1994
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Mathematical Sciences: Second Joint Midwest-Southeastern Atlantic Regional Differential Equations Conference
数学科学:第二届中西部-东南大西洋区域微分方程联合会议
- 批准号:
9214473 - 财政年份:1992
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Mathematical Sciences: Joint Summer Research Conferences in the Mathematical Sciences, 1990-1993
数学科学:数学科学联合夏季研究会议,1990-1993
- 批准号:
8918200 - 财政年份:1990
- 资助金额:
$ 9.99万 - 项目类别:
Continuing Grant
Mathematical Sciences: Joint Asymptotic Distribution of Autoregressive Coefficient and Order Estimators
数学科学:自回归系数和阶次估计量的联合渐近分布
- 批准号:
8808852 - 财政年份:1988
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Mathematical Sciences: Joint K-spectral Sets and Subnormal Operators
数学科学:联合 K 谱集和次正规算子
- 批准号:
8701498 - 财政年份:1987
- 资助金额:
$ 9.99万 - 项目类别:
Continuing Grant
Mathematical Sciences: US - Nigeria Joint Symposium on Algebraic K-Theory
数学科学:美国-尼日利亚代数 K 理论联合研讨会
- 批准号:
8619642 - 财政年份:1987
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Joint Summer Research Conference in the Mathematical Sciences, 1987-1989
数学科学联合夏季研究会议,1987-1989
- 批准号:
8613199 - 财政年份:1987
- 资助金额:
$ 9.99万 - 项目类别:
Continuing Grant