Mathematical Sciences: Mathematical and Experimental Studies of Blood Flow in Collapsible Carotid Arteries with Stenoses
数学科学:狭窄颈动脉塌陷血流的数学和实验研究
基本信息
- 批准号:9505685
- 负责人:
- 金额:$ 15.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-07-15 至 2000-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Arteries with high grade stenoses may collapse under physiological conditions. The collapse may lead to accelerated fatigue and rupture of the fibrous cap of the plaque into the bloodstream with subsequent blockage of small arteries downstream. That can lead directly to heart attacks and strokes. The investigator and his colleague use mathematical, computational and experimental methods to study this collapsing process. Mathematical models have been limited primarily to one-dimensional models because of the difficulty in handling the collapsing tube, whose shape is unknown and changing. A three-dimensional nonlinear viscous mathematical model with free moving boundaries is introduced and a novel numerical method is developed to solve the model. The numerical method uses solutions of the longwave asymptotic expansions as the numerical initial condition and a boundary-iterative method to find the unknown moving boundary and the flow velocity and pressure. Experiments are performed to define the pressure-area relationship (tube law) for the elastic tube models and to quantify the exact pressure-flow conditions for tube collapse in a laboratory set-up. The laboratory experiments and in vivo measurements provide data for the formulation and verification of the mathematical model. The validated model together with its numerical solutions form a basis for further investigations of the collapsing process. Results obtained will be useful for early detection and prevention of stenoses, identifying the causes of rupture of plaque caps, and quantifying physiological conditions under which collapse may occur. While physiological dimensions of the carotid arteries and related parameter ranges are used in the computations and experiments, the methods developed in this project will be useful in a broad range of applications where free moving boundaries are involved. Plaque collecting in an artery can narrow it; this narrowing is called a stenosis. Just like wat er flowing in a narrowed channel, the blood will flow faster past a stenosis. In certain conditions, this can cause the artery to collapse. Then the plaque may break up in the bloodstream and subsequently block small arteries downstream. That can lead directly to heart attacks and strokes. The investigators study this collapsing process, using mathematical, computational and experimental methods. Previous models have been limited primarily to one-dimensional models because of the difficulty in handling the collapsing tube, whose shape is unknown and changing. This project develops a three-dimensional mathematical model that accounts for the blood flow and the change in shape of the collapsing artery, and a novel numerical method to solve the model. One of the investigators conducts experiments to determine the pressure-area relationship (tube law) for the elastic tube models and the exact pressure-flow conditions for tube collapse in a laboratory set-up. The laboratory experiments and in vivo measurements provide data for the formulation and verification of the mathematical model. Results obtained will be useful for early detection and prevention of stenoses, identifying the causes of pupture of plaque caps, and physiological conditions under which collapse may occur. The numerical methods developed in this project will be useful in other applications where free moving boundaries are involved.
具有高度狭窄的动脉可能在生理条件下塌陷。 塌陷可能导致加速疲劳和斑块纤维帽破裂进入血流,随后阻塞下游的小动脉。 会直接导致心脏病和中风。 研究人员和他的同事使用数学,计算和实验方法来研究这个崩溃过程。 数学模型主要局限于一维模型,因为很难处理塌陷管,其形状是未知的和不断变化的。 建立了一个三维非线性粘性流体运动数学模型,并提出了一种新的数值求解方法。 数值方法使用长波渐近展开的解决方案作为数值初始条件和边界迭代方法来找到未知的移动边界和流速和压力。 进行实验来定义的压力-面积关系(管法)的弹性管模型和量化的确切的压力-流量条件管崩溃在实验室设置。 实验室实验和体内测量为数学模型的制定和验证提供了数据。 验证模型连同其数值解形成的基础上,进一步调查的崩溃过程。 所获得的结果将有助于狭窄的早期检测和预防,确定斑块帽破裂的原因,并量化可能发生塌陷的生理条件。 虽然在计算和实验中使用的颈动脉的生理尺寸和相关的参数范围,在这个项目中开发的方法将是有用的,在广泛的应用中,自由移动的边界涉及。 动脉中聚集的斑块会使动脉变窄,这种变窄称为狭窄。 就像水在狭窄的通道中流动一样,血液在狭窄处流动得更快。 在某些情况下,这可能会导致动脉塌陷。 然后,斑块可能会在血液中破裂,随后阻塞下游的小动脉。 会直接导致心脏病和中风。 研究人员使用数学,计算和实验方法研究这种崩溃过程。 以前的模型主要局限于一维模型,因为在处理塌陷管,其形状是未知的和不断变化的困难。 该项目开发了一个三维数学模型,该模型考虑了血流和塌陷动脉形状的变化,以及一种新的数值方法来求解该模型。 其中一名研究人员进行实验,以确定弹性管模型的压力-面积关系(管定律)和实验室装置中管塌陷的确切压力-流量条件。 实验室实验和体内测量为数学模型的制定和验证提供了数据。 所获得的结果将是有用的早期检测和预防狭窄,确定原因的斑块帽,和生理条件下,崩溃可能发生。 在这个项目中开发的数值方法将是有用的,在其他应用中,自由移动边界涉及。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dalin Tang其他文献
Using Intravascular Ultrasound Image-Based Fluid-Structure Interaction Models and Machine Learning Method to Predict Coronary Plaque Vulnerability Change
使用基于血管内超声图像的流固耦合模型和机器学习方法来预测冠状动脉斑块脆弱性变化
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:1.6
- 作者:
Liang Wang;Dalin Tang;Akiko Maehara;Zheyang Wu;Chun Yang;David Muccigrosso;Mitsuaki Matsumura;Jie Zheng;Richard Bach;Kristen L. Billiar;Gregg W. Stone;Gary S. Mintz - 通讯作者:
Gary S. Mintz
Using 3D Echo-Based Modeling to Quantify In Vivo Ventricle Material Properties: A Multi-Patient Study
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:
- 作者:
Jing Yao;Chun Yang;Di Xu;Dalin Tang; - 通讯作者:
Génération automatique de modèle vasculaire sur la base d'interactions fluide-structure (fsi)
流体结构相互作用基础血管模型自动生成 (FSI)
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Dalin Tang;Zhongzhao Teng - 通讯作者:
Zhongzhao Teng
Editorial: Computational Biomechanics of the Heart and Vasculature With Potential Clinical and Surgical Applications
- DOI:
10.3389/fphys.2022.872774 - 发表时间:
2022 - 期刊:
- 影响因子:4
- 作者:
Zhiyong Li;Youjun Liu;Estefania Peña;Daniela Valdez-Jasso;Dalin Tang - 通讯作者:
Dalin Tang
Multi‑factor decision‑making strategy for better coronary plaque burden increase prediction: a patient‑specifc 3D FSI study using IVUS follow‑up data
更好地预测冠状动脉斑块负荷增加的多因素决策策略:使用 IVUS 随访数据的患者特异性 3D FSI 研究
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:3.5
- 作者:
Liang Wang;Dalin Tang;Akiko Maehara;David Molony;Jie Zheng;Habib Samady;Zheyang Wu;Wenbin Lu;Jian Zhu;Genshan Ma;Don P. Giddens;Gregg W. Stone;Gary S. Mintz - 通讯作者:
Gary S. Mintz
Dalin Tang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dalin Tang', 18)}}的其他基金
Multi-Physics Modeling and Meshless Methods for Atherosclerotic Plaque Progression
动脉粥样硬化斑块进展的多物理场建模和无网格方法
- 批准号:
0540684 - 财政年份:2006
- 资助金额:
$ 15.83万 - 项目类别:
Continuing Grant
Experiment-Based 3-D Computational Studies of Blood Flow in Stenotic Carotid Arteries with Dynamic Wall Properties
基于实验的具有动态壁特性的狭窄颈动脉血流的 3D 计算研究
- 批准号:
0072873 - 财政年份:2001
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
Mathematical Sciences: Mathematical and Experimental Studiesof Pulsatile Flow in Free Moving Elastic Tubes
数学科学:自由运动弹性管中脉动流的数学和实验研究
- 批准号:
9209129 - 财政年份:1992
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences: An Experimental Tool for Topological Surface Dynamics
数学科学:拓扑表面动力学的实验工具
- 批准号:
9626884 - 财政年份:1996
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
Mathematical Sciences: Experimental Mathematics
数学科学:实验数学
- 批准号:
9424172 - 财政年份:1995
- 资助金额:
$ 15.83万 - 项目类别:
Continuing Grant
Mathematical Sciences: Experimental Special Session on Exemplary Current Doctoral Work in Mathematics - October 28-29, 1994
数学科学:关于当前数学博士工作范例的实验特别会议 - 1994 年 10 月 28-29 日
- 批准号:
9405872 - 财政年份:1994
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
Mathematical Sciences: Development and Application of Advanced Numerical Methods to Outstanding Problems in Experimental Shock Waves Geophysics
数学科学:先进数值方法在实验冲击波地球物理突出问题中的发展和应用
- 批准号:
9316529 - 财政年份:1994
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
Mathematical Sciences: Theoretical and Experimental Aspects of the Topology and Dynamics of 3-Manifolds
数学科学:3-流形拓扑和动力学的理论和实验
- 批准号:
9407975 - 财政年份:1994
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
Mathematical Sciences: REU Experimental Mathematics
数学科学:REU 实验数学
- 批准号:
9400754 - 财政年份:1994
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
Mathematical Sciences: Applied and Computational Mathematics and Experimental Analysis
数学科学:应用与计算数学和实验分析
- 批准号:
9403915 - 财政年份:1994
- 资助金额:
$ 15.83万 - 项目类别:
Continuing Grant
Mathematical Sciences: Experimental and Theoretical Investigation of Nonlinear Sloshing Waves
数学科学:非线性晃动波的实验和理论研究
- 批准号:
9301163 - 财政年份:1993
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
Mathematical Sciences: Bayesian Experimental Design and Prior Elicitation in Response to Surface Models
数学科学:贝叶斯实验设计和对表面模型的先验启发
- 批准号:
9209378 - 财政年份:1992
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
Mathematical Sciences: Mathematical and Experimental Studiesof Pulsatile Flow in Free Moving Elastic Tubes
数学科学:自由运动弹性管中脉动流的数学和实验研究
- 批准号:
9209129 - 财政年份:1992
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant