Mathematical Sciences: Methods for Smoothing Bivariate, Irregularly Spaced Data

数学科学:平滑二变量、不规则间隔数据的方法

基本信息

项目摘要

9510435 Kafadar Abstract The research under this project will develop methods for smoothing bivariate, irregularly spaced data such as environmental, geological, or health-related data with geographically-defined coordinates. Because such data often arise from non-Gaussian distributions with potentially non-stationary noise (e.g., highly skewed values in barometric pressure data, exotic values due to earthquakes in geophysical data, discontinuities due to faults in geological data), linear smoothers, or smoothers derived assuming stationary white noise, may not perform as well as more robust, nonlinear smoothers in capturing the underlying trend. This research will attempt to identidy (1) those situations where nonlinear versus linear smoothers should yield good performance; (2) how smoothed values at the border should be defined (often a source of significant bias in estimating the trend); and (3) how the resulting smoothed trend can be displayed. In 1974, the National Cancer Institute published the Atlas of Cancer Mortality for U.S. Counties: 1950-1969. It consisted of U.S. maps, one for each of 35 sites of cancer, where counties were shaded according to the level of the mortality rate for the cancer site being depicted. These maps illustrated, for example, high rates of lung cancer around the Gulf of Mexico and high rates of bladder cancer around Delaware and New Jersey; subsequently, environmental causes for these high rates were identified. Further atlases of cancer mortality were published, and an atlas of mortality from causes other than cancer is forthcoming from National Center for Health Statistics. Because some counties have very small populations, reported mortality rates are very uncertain; regions of elevated risks may be difficult to detect. The objective of this research is to develop methods which will highlight geographical patterns in data such as cancer mortality in U.S. counties. Geographical movement of populations often is responsible for spreading the risk around. Thus it is important to identify not just isolated counties of elevated risk but broad regions which may indicate environmental causes for concern. Conversely, regions of low risk may serve as models for measures of disease prevention and control. These methods can be applied to other sorts of data to answer similar questions, such as which regions indicate significant seismic activity, or in which places the ozone layer is depleting most rapidly.
9510435 KAFADAR摘要该项目下的研究将开发用于平滑双变量,不规则间隔的数据的方法,例如环境,地质或与健康相关的数据,并具有地理定义的坐标。 Because such data often arise from non-Gaussian distributions with potentially non-stationary noise (e.g., highly skewed values in barometric pressure data, exotic values due to earthquakes in geophysical data, discontinuities due to faults in geological data), linear smoothers, or smoothers derived assuming stationary white noise, may not perform as well as more robust, nonlinear smoothers in capturing the underlying trend. 这项研究将尝试识别(1)那些非线性与线性smoothorther应该产生良好性能的情况; (2)如何定义边界的平滑值(通常是估计趋势的明显偏见的来源); (3)如何显示产生的平滑趋势。 1974年,美国国家癌症研究所(National Cancer Institute)出版了美国县的癌症死亡地图集:1950- 1969年。 它由美国地图组成,其中一个是35个癌症部位中的每个地图,该县根据所描绘的癌症部位的死亡率水平来遮蔽县。 这些地图说明了墨西哥湾周围的高肺癌的高率,以及特拉华州和新泽西州周围膀胱癌的高率。随后,确定了这些高率的环境原因。 发表了癌症死亡率的进一步地图,并从国家健康统计中心即将到来的癌症以外的其他原因死亡地图集。 由于某些县人口很少,因此报告的死亡率非常不确定。风险升高的区域可能很难检测到。这项研究的目的是开发方法,该方法将突出数据中的地理模式,例如美国县的癌症死亡率。人口的地理运动通常负责散布风险。 因此,重要的是要确定风险升高的孤立县,而且可能表明令人担忧的环境原因的广泛地区。 相反,低风险区域可以作为预防疾病预防和控制的模型。 这些方法可以应用于其他类型的数据,以回答类似的问题,例如哪些区域表明地震活动显着,或者在哪些地方臭氧层层最快地耗尽。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karen Kafadar其他文献

Simultaneous smoothing and adjusting mortality rates in U.S. counties: melanoma in white females and white males.
同时平滑和调整美国各县的死亡率:白人女性和白人男性的黑色素瘤。
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Karen Kafadar
  • 通讯作者:
    Karen Kafadar
Statistical Computing
统计计算
THE ANALYTICAL MEDIATOR FOR MULTI-DIMENSIONAL DATA
多维数据的分析中介
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mazdak Hashemi;Roger King;Karen Kafadar
  • 通讯作者:
    Karen Kafadar
How do latent print examiners perceive proficiency testing? An analysis of examiner perceptions, performance, and print quality
  • DOI:
    10.1016/j.scijus.2019.11.002
  • 发表时间:
    2020-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sharon Kelley;Brett O. Gardner;Daniel C. Murrie;Karen D.H. Pan;Karen Kafadar
  • 通讯作者:
    Karen Kafadar
Inference of long term effects and over-diagnosis in periodic cancer screening
定期癌症筛查中长期影响和过度诊断的推断
  • DOI:
    10.5705/ss.2012.067
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Dongfeng Wu;Karen Kafadar;Gary L. Rosner
  • 通讯作者:
    Gary L. Rosner

Karen Kafadar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karen Kafadar', 18)}}的其他基金

Advances in Experimental Particle Physics through Statistical Methodology and Data Analysis
通过统计方法和数据分析在实验粒子物理方面取得进展
  • 批准号:
    0802295
  • 财政年份:
    2007
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Advances in Experimental Particle Physics through Statistical Methodology and Data Analysis
通过统计方法和数据分析在实验粒子物理方面取得进展
  • 批准号:
    0527090
  • 财政年份:
    2005
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant

相似国自然基金

SPECT/CT成像与图像重建的数学建模及快速科学计算方法
  • 批准号:
    11601537
  • 批准年份:
    2016
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
无界区域椭圆型和抛物型偏微分方程的人工边界条件数值方法研究
  • 批准号:
    11471019
  • 批准年份:
    2014
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
软物质材料的微结构和宏观性质的计算与分析
  • 批准号:
    11471046
  • 批准年份:
    2014
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
应用数学与科学计算暑期学校
  • 批准号:
    10826002
  • 批准年份:
    2008
  • 资助金额:
    7.0 万元
  • 项目类别:
    数学天元基金项目
中国传统科学中的数值计算方法及其现代价值
  • 批准号:
    10471111
  • 批准年份:
    2004
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

エンパワーメント・アプローチに基づく小学校複式学級の教科教育方法論の再構築
基于赋权法的小学多班学科教学法重构
  • 批准号:
    23K17599
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Novel Hybrid Computational Models to Disentangle Complex Immune Responses
新型混合计算模型可解开复杂的免疫反应
  • 批准号:
    10794448
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
Research and Methods Core
研究和方法核心
  • 批准号:
    10661409
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
Protein Phosphorylation Networks in Health and Disease
健康和疾病中的蛋白质磷酸化网络
  • 批准号:
    10682983
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
Machine Learning Risk Prediction of Kidney Disease After Extremely Preterm Birth
机器学习对极早产后肾脏疾病的风险预测
  • 批准号:
    10589356
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了