SGER: Depth from Physics in Computer Vision
SGER:计算机视觉物理学的深度
基本信息
- 批准号:9526210
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-08-15 至 1997-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award, in the Small Grants for Exploratory Research mode, will examine and test a first-principles approach for determining the relative depths of objects in images using only knowledge about the medium and the intensities acquired in a single view. Most methods for inferring depth (or range) in computer vision have depended on the use of multiple cameras and normally require the identification of corresponding points in the resulting images. Alternatively, rangefinder methods depend on sharpness-of-focus measures that require calibrated-focus lenses and an unambiguous definition of focus. The planned approach is based on the physics of light transmission and attenuation in a translucent diffuse medium. These investigators have shown, in theory and with a small set of experiments (in simulated biological tissue), that it is straightforward to infer the relative depths of structures when they are embedded in such a medium. This work is particularly exploratory because the original results arose as a byproduct of other research and so the extent of its applicability in a more general setting is not known. Two of the questions to be probed are: what are the limitations (e.g., minimum detectable depth difference) and sensitivities (to assumptions, and to changes in parameters) of the model; and what is the effect of the size and shape of the object on determination of its relative depth. The research is aimed at the development of a capability to identify unambiguously the relative depths of structures in an image, and thus to prevent confusion about which structures overlie which others. Because a single view is sufficient, it will be possible to make this identification retrospectively, as long as the properties of the medium are known. This should be useful in evaluating images arising, for example, in underwater, biological, and atmospheric applications, as well as in more-turbid environments.
这个奖项,在探索性研究模式的小赠款,将检查和测试的第一原理方法,用于确定图像中的对象的相对深度,只使用有关的介质和在一个单一的视图中获得的强度的知识。 在计算机视觉中,大多数用于推断深度(或范围)的方法都依赖于使用多个相机,并且通常需要识别结果图像中的对应点。另外,测距仪方法依赖于需要校准焦距镜头和明确定义焦点的聚焦锐度测量。 计划中的方法是基于半透明漫射介质中的光传输和衰减的物理学。 这些研究人员在理论上和一小部分实验(在模拟生物组织中)表明,当结构嵌入这种介质时,可以直接推断结构的相对深度。 这项工作特别具有探索性,因为最初的结果是作为其他研究的副产品出现的,因此其在更一般环境中的适用性程度尚不清楚。 需要探讨的两个问题是:限制是什么(例如,最小可探测深度差)和模型的敏感性(对假设和参数变化的敏感性);以及物体的大小和形状对确定其相对深度有何影响。 这项研究的目的是发展一种能力,以明确地识别图像中结构的相对深度,从而防止混淆哪些结构覆盖哪些其他结构。因为一个单一的视图是足够的,它将有可能作出这种识别回顾,只要介质的属性是已知的。 这应该是有用的,在评估产生的图像,例如,在水下,生物和大气应用,以及在更浑浊的环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Murray Loew其他文献
Classification of mixed-radiation fields using the vector representation of thermoluminescent glow curves
- DOI:
10.1016/j.radmeas.2007.12.033 - 发表时间:
2008-02-01 - 期刊:
- 影响因子:
- 作者:
Marlene Skopec;Murray Loew;Jack Price;Marko Moscovitch - 通讯作者:
Marko Moscovitch
Texture analysis and machine learning algorithms accurately predict histologic grade in small (< 4 cm) clear cell renal cell carcinomas: a pilot study
- DOI:
10.1007/s00261-019-02336-1 - 发表时间:
2019-12-10 - 期刊:
- 影响因子:2.200
- 作者:
Shawn Haji-Momenian;Zixian Lin;Bhumi Patel;Nicole Law;Adam Michalak;Anishsanjay Nayak;James Earls;Murray Loew - 通讯作者:
Murray Loew
Glass at risk: A new approach for the study of 19th century vessel glass
玻璃面临风险:研究 19 世纪器皿玻璃的新方法
- DOI:
10.1016/j.culher.2022.01.013 - 发表时间:
2022 - 期刊:
- 影响因子:3.1
- 作者:
L. Brostoff;Carol Lynn Ward;S. Zaleski;T. Villafana;A. Buechele;I. Muller;Fenella G. France;Murray Loew - 通讯作者:
Murray Loew
Automated spectroscopy of X-ray and gamma-ray pulse height spectra using energy space subdivision
- DOI:
10.1016/j.nima.2005.03.126 - 发表时间:
2005-07-01 - 期刊:
- 影响因子:
- 作者:
Tim McClanahan;Jacob Trombka;Murray Loew - 通讯作者:
Murray Loew
MP-470543-008 PANORAMIC HYPERSPECTRAL OPTICAL MAPPING OF CARDIAC MEMBRANE POTENTIAL AND TISSUE TYPE IN INFARCTED HEARTS
MP-470543-008 梗死心脏中心肌膜电位和组织类型的全景高光谱光学映射
- DOI:
10.1016/j.hrthm.2024.03.371 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:5.700
- 作者:
Grant Kowalik;Murray Loew;Emilia Entcheva;Matthew W. Kay - 通讯作者:
Matthew W. Kay
Murray Loew的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Murray Loew', 18)}}的其他基金
SCIART: Instrument Development and Analysis Tools for Standoff Identification and Mapping of Binders in Paintings
SCIART:用于绘画中粘合剂的对峙识别和绘图的仪器开发和分析工具
- 批准号:
1041827 - 财政年份:2010
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似海外基金
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Neural mechanism of the luminance contrast effect on perceived depth from disparity
亮度对比度对视差感知深度影响的神经机制
- 批准号:
24K16880 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
In-depth Investigation of Lithium Dendrite Formation Processes
深入研究锂枝晶形成过程
- 批准号:
DE240101090 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Discovery Early Career Researcher Award
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
- 批准号:
2338890 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
EAGER: A Novel Hybrid Light-Field and High-Energy Pulse Color and Depth Encoded Illumination PIV Technique for Unsteady Flow Analyses
EAGER:一种用于非稳态流分析的新型混合光场和高能脉冲颜色和深度编码照明 PIV 技术
- 批准号:
2418485 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
実レンズの非理想性補正に基づく高精度Depth from Defocus法の実現
基于真实镜头非理想校正的散焦法高精度景深实现
- 批准号:
24K15008 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the Structural Reinforcement to Optimize the Axial Tension of Rigid Riser in Water Depth Below 4,000m
4000m以下水深刚性立管轴拉力优化的结构加固研究
- 批准号:
23K04265 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
In depth characterisation of the gamma delta T cell immune synapse
γδT 细胞免疫突触的深入表征
- 批准号:
DP230102073 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Discovery Projects
Emergent Behavior in a Dish: Discovery of Bi-directional Spiraling as a Population Phenomenon in C. elegans Enables In-Depth Dissection of Mechanisms Underlying Group Behaviors
培养皿中的突现行为:发现秀丽隐杆线虫中的双向螺旋种群现象,有助于深入剖析群体行为背后的机制
- 批准号:
10724212 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别: