Classification of C*-Algebras, Extensions and Homomorphisms

C*-代数的分类、扩展和同态

基本信息

  • 批准号:
    9531776
  • 负责人:
  • 金额:
    $ 3.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1996
  • 资助国家:
    美国
  • 起止时间:
    1996-07-15 至 1998-06-30
  • 项目状态:
    已结题

项目摘要

9531776 Lin This project consists of three closely related topics, classification of homomorphisms from one given C*-algebra to another, classification of extensions of one C*-algebra by another, and classification of C*-algebras of real rank zero. The investigator will use KK-theory plus tracial information to determine homomorphisms from an abelian C*-algebra to a simple C*-algebra of real rank zero with stable rank one. To classify extensions, he will classify monomorphisms from an (abelian) C*-algebra to the corona algebra. With additional efforts, by classifying homomorphisms (and automorphisms), one might also be able to classify certain types of C*-algebras (of real rank zero). One particular class that he will consider is direct limits of some extensions of certain algebras. The first example of a C*-algebra is the complex numbers. It is proved to be the only C*-algebra that is also a field. In fact, any finite number of copies of the complex numbers is a C*-algebra. One can also have infinitely many copies. If one glues together continuously an infinite number of copies, one may arrive at the complex-valued continuous functions on an interval, or even complex-valued continuous functions defined on a circle. In fact, every commutative C*-algebra (one in which AB=BA) turns out to be the set of continuous complex-valued functions on some space. By contrast, matrices over the complex field provide noncommutative C*-algebras. Every C*-algebra is technically a normed-closed and conjugate-closed subalgebra of all bounded linear operators on a Hilbert space. What this means is that C*-algebras may be viewed as some kind of generalized complex numbers, and, as in the case of complex numbers, C*-algebras have many important applications, ranging from dynamical systems and quantum mechanics to other fields of mathematics such as operator theory, linear algebra, noncommutative geometry, group representations, and so on. For example, C*- algebras together with their groups of symmetries are often related to problems in dynamical systems. Recent results in C*-algebra theory have been used to answer questions such as when two matrices commute. This project is to study, in a way, how many types of such algebras exist, how to distinguish them from one another, how to construct new C*-algebras from old ones, and to study relationships between these C*-algebras and possible applications to other fields. The objective is to gain a better understanding of these algebras and to develop better theory and methods for applications. ***
本课题包括三个密切相关的主题:给定C*-代数到另一个C*-代数的同态分类,一个C*-代数被另一个C*-代数扩展的分类,以及实秩0的C*-代数的分类。研究者将使用kk理论加迹信息来确定从一个阿贝尔C*-代数到一个稳定秩为1的实秩0的简单C*-代数的同态。为了对扩展进行分类,他将单态从(阿贝尔)C*-代数分类到冕代数。通过额外的努力,通过对同态(和自同态)进行分类,人们也可能能够对某些类型的C*-代数(实秩为0)进行分类。他将考虑的一个特殊的类别是某些代数的某些扩展的直接极限。C*代数的第一个例子是复数。证明了它是唯一也是域的C*-代数。事实上,任何有限数量的复数副本都是C*-代数。一个人也可以有无限多的副本。如果将无限个副本连续地粘合在一起,就可以得到区间上的复值连续函数,甚至可以得到定义在圆上的复值连续函数。事实上,每个可交换C*代数(其中AB=BA)都是某个空间上连续复值函数的集合。相反,复域上的矩阵提供非交换的C*-代数。每个C*-代数在技术上都是Hilbert空间上所有有界线性算子的范闭和共轭闭子代数。这意味着C*-代数可以被看作是某种广义的复数,而且,在复数的情况下,C*-代数有许多重要的应用,从动力系统和量子力学到其他数学领域,如算子理论、线性代数、非交换几何、群表示等。例如,C*-代数及其对称群经常与动力系统中的问题有关。C*-代数理论的最新结果已被用于回答诸如两个矩阵何时交换之类的问题。在某种程度上,这个项目是研究存在多少种这样的代数,如何区分它们,如何从旧的C*-代数中构造新的C*-代数,并研究这些C*-代数之间的关系以及可能在其他领域的应用。目的是更好地理解这些代数,并为应用开发更好的理论和方法。***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Huaxin Lin其他文献

ay 2 00 4 Classification of homomorphisms and dynamical systems
ay 2 00 4 同态和动力系统的分类
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huaxin Lin
  • 通讯作者:
    Huaxin Lin
Tracial oscillation zero and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mi mathvariant="script">Z</mml:mi></mml:math>-stability
迹线振荡零和 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mi mathvariant="script">Z</
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Huaxin Lin
  • 通讯作者:
    Huaxin Lin
Hereditary uniform property $Gamma$
世袭制服财产$Gamma$
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huaxin Lin
  • 通讯作者:
    Huaxin Lin
Index to Volume 131
第 131 卷索引
  • DOI:
    10.1016/0022-460x(89)91020-1
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    R. Brockett;A. Mansouri;B. Chiarellotto;Andrea Pulita;H. Bercovici;W. S. Li;D. Timotin;K. Ito;Shun Nakamura;B. Totaro;Claus Gerhardt;Yasuo Ohno;Takashi Taniguchi;S. Wakatsuki;V. Mazorchuk;C. Stroppel;N. Burq;F. Planchon;Huaxin Lin
  • 通讯作者:
    Huaxin Lin
Exponential rank and exponential length for Z-stable simple C*-algebras
  • DOI:
  • 发表时间:
    2013-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huaxin Lin
  • 通讯作者:
    Huaxin Lin

Huaxin Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Huaxin Lin', 18)}}的其他基金

Dynamical Systems, C*-Algebra Theory, and K-Theory
动力系统、C* 代数理论和 K 理论
  • 批准号:
    1954600
  • 财政年份:
    2020
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Standard Grant
Simple Amenable C*-algebras and K-theory
简单可行的 C* 代数和 K 理论
  • 批准号:
    1665183
  • 财政年份:
    2017
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Continuing Grant
C*-algebra theory, Classification and its applications
C*-代数理论、分类及其应用
  • 批准号:
    1361431
  • 财政年份:
    2014
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Standard Grant
The Structure of Simple Amenable C*-Algebras and their Homomorphisms.
简单的 C* 代数的结构及其同态。
  • 批准号:
    1101360
  • 财政年份:
    2011
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Continuing Grant
Classification of amenable C*-algebras and applications
适合的 C* 代数分类和应用
  • 批准号:
    0754813
  • 财政年份:
    2008
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Standard Grant
C*-Algebras and Dynamical Systems
C*-代数和动力系统
  • 批准号:
    0355273
  • 财政年份:
    2004
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Continuing Grant
Simple C*-Algebras
简单的 C* 代数
  • 批准号:
    0097903
  • 财政年份:
    2001
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Standard Grant
The Structure of Nuclear C*-Algebras
核 C* 代数的结构
  • 批准号:
    9801482
  • 财政年份:
    1998
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Standard Grant
International Conference on Operator Algebras and Operator Theory to be held in Shanghai, China, July 4-9, 1997
算子代数和算子理论国际会议将于1997年7月4-9日在中国上海举行
  • 批准号:
    9705842
  • 财政年份:
    1997
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Standard Grant
Mathematical Sciences: C*-Algebra Extensions and Homomorphisms
数学科学:C*-代数扩展和同态
  • 批准号:
    9596028
  • 财政年份:
    1994
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Continuing Grant

相似海外基金

Free Extensions of Second-Order Algebras
二阶代数的自由扩展
  • 批准号:
    2741288
  • 财政年份:
    2022
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Studentship
Extensions of Yetter-Drinfel'd Hopf algebras
Yetter-Drinfeld Hopf 代数的推广
  • 批准号:
    RGPIN-2017-06543
  • 财政年份:
    2022
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Discovery Grants Program - Individual
Extensions of Yetter-Drinfel'd Hopf algebras
Yetter-Drinfeld Hopf 代数的推广
  • 批准号:
    RGPIN-2017-06543
  • 财政年份:
    2021
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Discovery Grants Program - Individual
Extensions of Yetter-Drinfel'd Hopf algebras
Yetter-Drinfeld Hopf 代数的推广
  • 批准号:
    RGPIN-2017-06543
  • 财政年份:
    2020
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Discovery Grants Program - Individual
Properties of Banach algebras and their extensions
Banach代数的性质及其推广
  • 批准号:
    2438047
  • 财政年份:
    2020
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Studentship
Extensions of Yetter-Drinfel'd Hopf algebras
Yetter-Drinfeld Hopf 代数的推广
  • 批准号:
    RGPIN-2017-06543
  • 财政年份:
    2019
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Discovery Grants Program - Individual
Extensions of integrable quantum field theories based on Lorentzian Kac-Moody algebras
基于洛伦兹 Kac-Moody 代数的可积量子场论的扩展
  • 批准号:
    2118895
  • 财政年份:
    2018
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Studentship
Extensions of Yetter-Drinfel'd Hopf algebras
Yetter-Drinfeld Hopf 代数的推广
  • 批准号:
    RGPIN-2017-06543
  • 财政年份:
    2018
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Discovery Grants Program - Individual
Extensions of Yetter-Drinfel'd Hopf algebras
Yetter-Drinfeld Hopf 代数的推广
  • 批准号:
    RGPIN-2017-06543
  • 财政年份:
    2017
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Discovery Grants Program - Individual
Extensions of twisted current Lie algebras
扭曲电流李代数的推广
  • 批准号:
    497330-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 3.9万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了