Dynamical Systems, C*-Algebra Theory, and K-Theory
动力系统、C* 代数理论和 K 理论
基本信息
- 批准号:1954600
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of dynamical systems is the study of the long-term behavior of evolving systems. The modern theory of dynamical systems originated at the end of 19th century with fundamental questions concerning the stability and evolution of the solar system, which rapidly led to developments of applications to physics, biology, meteorology, economics and other areas. This project is a mathematical analysis of certain topological dynamical systems via C*-algebra theory. C*-algebras are infinite dimensional linear algebras. The project is an attempt to use a few computable data to determine the structure of certain C*-algebras arising from the dynamical systems. The project also studies closely related C*-algebra theory which will be used in the computation of data generated by dynamical systems. The success of the project would reveal the deep internal relationship between the theory of dynamical systems and theory of C*-algebras and pave the way for further applications of these theories.The project may also be described as a study of theoretical applications of the classification of simple amenable C*-algebras to the study of topological dynamical systems. The central goal of the project is to use K-theory related data to analyze the structure of minimal dynamical systems and to develop new general methods to compute K-theory related groups for separable amenable C*-algebras. Let G be a group acting on a compact metric space X. The algebra of continuous functions on X together with the group action generate a crossed product C*-algebra. One specific problem that the project will study is to determine when two such actions are asymptotically conjugate. Closely related problems include the study of automorphisms on C*-algebras. It is proposed to use K-theory and KK-theory as well as tracial information to characterize the group actions. Methods developed in the theory of classification of simple amenable C*-algebras will be further enriched. Moreover new bridges between dynamical systems and C*-algebra theory will be built. The project will also study irreducible representations of certain simple C*-algebras. It is the proposer's long term goal to provide, from this project and related research as well as via related studies by other researchers, some deeper theoretical understandings and wider applications of C*-algebra theory and its interplay with the study of dynamical systems to various other related research areas, such as ergodic theory, non-commutative homotopy theory, abstract harmonic analysis, as well as physics and biology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力系统的研究是对演化系统长期行为的研究。现代动力系统理论起源于19世纪末有关太阳系稳定性和进化的基本问题,并迅速发展到物理学、生物学、气象学、经济学和其他领域。本课题是利用C*-代数理论对某些拓扑动力系统进行数学分析。C*代数是无限维线性代数。该项目是一个尝试使用一些可计算的数据来确定某些C*-代数的结构产生的动力系统。该项目还研究了密切相关的C*-代数理论,该理论将用于计算动力系统产生的数据。该项目的成功将揭示动力系统理论与C*-代数理论之间深刻的内在联系,并为这些理论的进一步应用铺平道路。该项目也可以被描述为对简单可服从C*-代数分类在拓扑动力系统研究中的理论应用的研究。该项目的中心目标是使用k理论相关数据来分析最小动力系统的结构,并开发新的一般方法来计算可分可调C*-代数的k理论相关群。设G是作用于紧度量空间X上的群,X上连续函数的代数与群作用产生一个交叉积C*-代数。该项目将研究的一个具体问题是确定两个这样的作用何时是渐近共轭的。密切相关的问题包括C*-代数上的自同构的研究。提出了利用k理论和kk理论以及跟踪信息来描述群体行为的方法。在简单可调C*-代数的分类理论中发展的方法将进一步丰富。此外,将在动力系统和C*-代数理论之间建立新的桥梁。该项目还将研究某些简单C*-代数的不可约表示。作者的长期目标是通过本课题和相关研究以及其他研究者的相关研究,使C*-代数理论及其与动力系统研究的相互作用在遍历理论、非交换同伦理论、抽象谐波分析以及物理学和生物学等其他相关研究领域得到更深入的理论理解和更广泛的应用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tracial approximate divisibility and stable rank one
Tracial 近似整除性和稳定的秩一
- DOI:10.1112/jlms.12654
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Fu, Xuanlong;Li, Kang;Lin, Huaxin
- 通讯作者:Lin, Huaxin
Hereditary uniform property Γ
世袭制服财产 Î
- DOI:10.1007/s11425-022-2005-x
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Lin, Huaxin
- 通讯作者:Lin, Huaxin
Unitary groups and augmented Cuntz semigroups of separable simple Z-Stable C∗-algebras
可分离简单 Z 稳定 C 代数的酉群和增广 Cuntz 半群
- DOI:10.1142/s0129167x22500185
- 发表时间:2022
- 期刊:
- 影响因子:0.6
- 作者:Lin, Huaxin
- 通讯作者:Lin, Huaxin
On classification of non-unital amenable simple C-algebras, II
关于非单位服从的简单 C 代数的分类,II
- DOI:10.1016/j.geomphys.2020.103865
- 发表时间:2020
- 期刊:
- 影响因子:1.5
- 作者:Gong Guihua;Lin Huaxin
- 通讯作者:Lin Huaxin
The classification of simple separable KK-contractible C*-algebras with finite nuclear dimension
- DOI:10.1016/j.geomphys.2020.103861
- 发表时间:2016-11
- 期刊:
- 影响因子:1.5
- 作者:G. Elliott;G. Gong;Huaxin Lin;Z. Niu
- 通讯作者:G. Elliott;G. Gong;Huaxin Lin;Z. Niu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huaxin Lin其他文献
ay 2 00 4 Classification of homomorphisms and dynamical systems
ay 2 00 4 同态和动力系统的分类
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Huaxin Lin - 通讯作者:
Huaxin Lin
Tracial oscillation zero and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mi mathvariant="script">Z</mml:mi></mml:math>-stability
迹线振荡零和 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mi mathvariant="script">Z</
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:1.7
- 作者:
Huaxin Lin - 通讯作者:
Huaxin Lin
Index to Volume 131
第 131 卷索引
- DOI:
10.1016/0022-460x(89)91020-1 - 发表时间:
2009 - 期刊:
- 影响因子:1.7
- 作者:
R. Brockett;A. Mansouri;B. Chiarellotto;Andrea Pulita;H. Bercovici;W. S. Li;D. Timotin;K. Ito;Shun Nakamura;B. Totaro;Claus Gerhardt;Yasuo Ohno;Takashi Taniguchi;S. Wakatsuki;V. Mazorchuk;C. Stroppel;N. Burq;F. Planchon;Huaxin Lin - 通讯作者:
Huaxin Lin
Exponential rank and exponential length for Z-stable simple C*-algebras
- DOI:
- 发表时间:
2013-01 - 期刊:
- 影响因子:0
- 作者:
Huaxin Lin - 通讯作者:
Huaxin Lin
Huaxin Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huaxin Lin', 18)}}的其他基金
Simple Amenable C*-algebras and K-theory
简单可行的 C* 代数和 K 理论
- 批准号:
1665183 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
C*-algebra theory, Classification and its applications
C*-代数理论、分类及其应用
- 批准号:
1361431 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
The Structure of Simple Amenable C*-Algebras and their Homomorphisms.
简单的 C* 代数的结构及其同态。
- 批准号:
1101360 - 财政年份:2011
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Classification of amenable C*-algebras and applications
适合的 C* 代数分类和应用
- 批准号:
0754813 - 财政年份:2008
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
International Conference on Operator Algebras and Operator Theory to be held in Shanghai, China, July 4-9, 1997
算子代数和算子理论国际会议将于1997年7月4-9日在中国上海举行
- 批准号:
9705842 - 财政年份:1997
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Classification of C*-Algebras, Extensions and Homomorphisms
C*-代数的分类、扩展和同态
- 批准号:
9531776 - 财政年份:1996
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Mathematical Sciences: C*-Algebra Extensions and Homomorphisms
数学科学:C*-代数扩展和同态
- 批准号:
9596028 - 财政年份:1994
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“阳化气、阴成形”理论探讨龟鹿二仙胶调控 HIF-1α/Systems Xc-通路抑制铁死亡治疗少弱精子症的作用机理
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
- 批准号:31971398
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Exact linear algebra, polynomial systems and applications of computer algebra
精确线性代数、多项式系统及计算机代数应用
- 批准号:
RGPIN-2020-04276 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
The higher algebra of spaces of quantum systems
量子系统空间的高等代数
- 批准号:
RGPIN-2021-02424 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
RII Track-4:NSF: Relational Algebra on Heterogeneous Extreme-scale Systems
RII Track-4:NSF:异构极端规模系统上的关系代数
- 批准号:
2132013 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Pushing the limits of computer algebra: From the integer resolution of polynomial systems to the computation of topological closures
突破计算机代数的极限:从多项式系统的整数分辨率到拓扑闭包的计算
- 批准号:
RGPIN-2018-06534 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
The higher algebra of spaces of quantum systems
量子系统空间的高等代数
- 批准号:
RGPAS-2021-00035 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Applications of advances in computer algebra to studying classical integrable systems and related algebraic structures
应用计算机代数的进展来研究经典可积系统和相关代数结构
- 批准号:
RGPIN-2017-06330 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Quantum algebra: from representation theory to integrable systems
量子代数:从表示论到可积系统
- 批准号:
2744813 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Studentship
Multi-dimensionally consistent integrable systems in geometry and algebra
几何和代数中的多维一致可积系统
- 批准号:
DP200102118 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Discovery Projects
The higher algebra of spaces of quantum systems
量子系统空间的高等代数
- 批准号:
RGPIN-2021-02424 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Exact linear algebra, polynomial systems and applications of computer algebra
精确线性代数、多项式系统及计算机代数应用
- 批准号:
RGPIN-2020-04276 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual