The Structure of Simple Amenable C*-Algebras and their Homomorphisms.
简单的 C* 代数的结构及其同态。
基本信息
- 批准号:1101360
- 负责人:
- 金额:$ 13.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project the principal investigator will study the structure of unital, simple, amenable C*-algebras and homomorphisms from one such C*-algebra to another. From a theorem of Gelfand we know that a unital commutative C*-algebra is isomorphic to the algebra of continuous functions on some compact Hausdorrf space. The structure of a commutative C*-algebra is thus completely determined by the underlying space, or the topological structure of the space. A homomorphism from one commutative C*-algebra to another is induced and determined by a continuous map from one underlying space to another. Thus, in the noncommutative setting, this project comes down to a study of noncommutative topology. The central goals of the project are (1) to use K-theory-related data to classify separable, simple, amenable C*-algebras, (2) to determine approximate unitary equivalence classes of homomorphisms, and (3) to find applications to the study of noncommutative topology and topological dynamical systems.The simplest C*-algebra is the system of all complex numbers. The next most simple C*-algebras are systems of matrices of complex numbers. In general, C*-algebras are systems of operators (which can be thought of as generalizations of matrices). For example, differentiation and integration are operators on certain function spaces. Operators can also be used, for example, as models for observables for the microscopic physical world. A system of operators has the structure of addition and multiplication, just like the system of numbers. Unlike the system of numbers, where two times three is the same as three times two, in a general C*-algebra the product A times B may not be the same as B times A. This noncommutativity reflects the reality of quantum physics and corresponds to the famous Heisenberg uncertainty principle. C*-algebras arise in many diverse areas of science and engineering, of which quantum mechanics is just one important example. For purposes of application, as well as for theoretical reasons, it is important to understand the structure of C*-algebras, or the structure of systems of operators formed from different applications. The aim of this project is to find the simplest essential data that determine both the structure of a C*-algebra and the relations that exist between C*-algebras so that applications become possible. To be useful, the data should be easy to obtain and relatively easy to compute. Furthermore, if two C*-algebras give rise to the same set of data, then the algebras should be identical for purposes of all applications. The prinicipal investigator has to search these data and invent tools to provide a proof that such data can indeed be used to determine completely the structure of the corresponding C*-algebras. The expected immediate applications will be to the study of dynamical systems. However, a long-term impact should be felt in many other areas of mathematics (e.g., linear algebra, operator theory, group representations, noncommutative topology, noncommutative geometry). In the last few years, some related research involved the training of several Ph.D. students. This project will also include both graduate student training and the mentoring of postdoctoral researchers.
在这个项目中,主要研究者将研究单位的,简单的,顺从的C*-代数的结构和从一个这样的C*-代数到另一个的同态。从Gelfand的一个定理我们知道,一个有单位元的交换C*-代数同构于某个紧Hausdorrf空间上的连续函数代数。因此,交换C*-代数的结构完全由底层空间或空间的拓扑结构决定。从一个交换C ~*-代数到另一个交换C ~*-代数的同态由一个基础空间到另一个基础空间的连续映射诱导和确定。因此,在非交换的设置,这个项目归结为非交换拓扑的研究。该项目的主要目标是:(1)利用K理论相关的数据对可分的、简单的、顺从的C*-代数进行分类;(2)确定同态的近似酉等价类;(3)应用于非交换拓扑和拓扑动力系统的研究。最简单的C*-代数是所有复数的系统。下一个最简单的C*-代数是复数矩阵系统。一般来说,C*-代数是算子系统(可以认为是矩阵的推广)。例如,微分和积分是某些函数空间上的算子。例如,算子也可以用作微观物理世界的可观测量的模型。运算符系统具有加法和乘法的结构,就像数字系统一样。与二乘三等于三乘二的数制不同,在一般的C*-代数中,乘积A乘以B可能不等于B乘以A。这种非对易性反映了量子物理的现实,并与著名的海森堡测不准原理相对应。C*-代数出现在科学和工程的许多不同领域,量子力学只是其中一个重要的例子。为了应用的目的,以及理论上的原因,重要的是要了解C*-代数的结构,或从不同的应用形成的算子系统的结构。该项目的目的是找到最简单的基本数据,确定C*-代数的结构和C*-代数之间存在的关系,使应用成为可能。为了有用,数据应该容易获得,并且相对容易计算。此外,如果两个C*-代数产生相同的数据集,那么对于所有应用的目的,代数应该是相同的。主要研究者必须搜索这些数据并发明工具来证明这些数据确实可以用来完全确定相应的C*-代数的结构。预期的直接应用将是对动力系统的研究。然而,在数学的许多其他领域(例如,线性代数、算子理论、群表示、非交换拓扑、非交换几何)。过去几年,一些相关研究涉及多名博士的培养学生该项目还将包括研究生培训和博士后研究人员的指导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huaxin Lin其他文献
ay 2 00 4 Classification of homomorphisms and dynamical systems
ay 2 00 4 同态和动力系统的分类
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Huaxin Lin - 通讯作者:
Huaxin Lin
Tracial oscillation zero and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mi mathvariant="script">Z</mml:mi></mml:math>-stability
迹线振荡零和 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mi mathvariant="script">Z</
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:1.7
- 作者:
Huaxin Lin - 通讯作者:
Huaxin Lin
Index to Volume 131
第 131 卷索引
- DOI:
10.1016/0022-460x(89)91020-1 - 发表时间:
2009 - 期刊:
- 影响因子:1.7
- 作者:
R. Brockett;A. Mansouri;B. Chiarellotto;Andrea Pulita;H. Bercovici;W. S. Li;D. Timotin;K. Ito;Shun Nakamura;B. Totaro;Claus Gerhardt;Yasuo Ohno;Takashi Taniguchi;S. Wakatsuki;V. Mazorchuk;C. Stroppel;N. Burq;F. Planchon;Huaxin Lin - 通讯作者:
Huaxin Lin
Exponential rank and exponential length for Z-stable simple C*-algebras
- DOI:
- 发表时间:
2013-01 - 期刊:
- 影响因子:0
- 作者:
Huaxin Lin - 通讯作者:
Huaxin Lin
Huaxin Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huaxin Lin', 18)}}的其他基金
Dynamical Systems, C*-Algebra Theory, and K-Theory
动力系统、C* 代数理论和 K 理论
- 批准号:
1954600 - 财政年份:2020
- 资助金额:
$ 13.86万 - 项目类别:
Standard Grant
Simple Amenable C*-algebras and K-theory
简单可行的 C* 代数和 K 理论
- 批准号:
1665183 - 财政年份:2017
- 资助金额:
$ 13.86万 - 项目类别:
Continuing Grant
C*-algebra theory, Classification and its applications
C*-代数理论、分类及其应用
- 批准号:
1361431 - 财政年份:2014
- 资助金额:
$ 13.86万 - 项目类别:
Standard Grant
Classification of amenable C*-algebras and applications
适合的 C* 代数分类和应用
- 批准号:
0754813 - 财政年份:2008
- 资助金额:
$ 13.86万 - 项目类别:
Standard Grant
The Structure of Nuclear C*-Algebras
核 C* 代数的结构
- 批准号:
9801482 - 财政年份:1998
- 资助金额:
$ 13.86万 - 项目类别:
Standard Grant
International Conference on Operator Algebras and Operator Theory to be held in Shanghai, China, July 4-9, 1997
算子代数和算子理论国际会议将于1997年7月4-9日在中国上海举行
- 批准号:
9705842 - 财政年份:1997
- 资助金额:
$ 13.86万 - 项目类别:
Standard Grant
Classification of C*-Algebras, Extensions and Homomorphisms
C*-代数的分类、扩展和同态
- 批准号:
9531776 - 财政年份:1996
- 资助金额:
$ 13.86万 - 项目类别:
Continuing Grant
Mathematical Sciences: C*-Algebra Extensions and Homomorphisms
数学科学:C*-代数扩展和同态
- 批准号:
9596028 - 财政年份:1994
- 资助金额:
$ 13.86万 - 项目类别:
Continuing Grant
相似国自然基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
复杂边界巷道瓦斯运移的网格单交错快速SIMPLE算法研究
- 批准号:11202228
- 批准年份:2012
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
High-Field Solid-State Dynamic Nuclear Polarization with Paramagnetic Systems Beyond Simple Spin 1/2
超越简单自旋的顺磁系统高场固态动态核极化 1/2
- 批准号:
2411584 - 财政年份:2024
- 资助金额:
$ 13.86万 - 项目类别:
Standard Grant
EAGER SENTINELS: The PCR-free Biosensor for a Fast, Simple, and Sensitive Detection of RNA.
EAGER SENTINELS:无需 PCR 的生物传感器,可快速、简单且灵敏地检测 RNA。
- 批准号:
2415037 - 财政年份:2024
- 资助金额:
$ 13.86万 - 项目类别:
Standard Grant
Motivic invariants and birational geometry of simple normal crossing degenerations
简单正态交叉退化的动机不变量和双有理几何
- 批准号:
EP/Z000955/1 - 财政年份:2024
- 资助金额:
$ 13.86万 - 项目类别:
Research Grant
SIMPLE - Scaled up Innovative Motor Production for Lower Environmental impact
简单 - 扩大创新电机生产规模以降低环境影响
- 批准号:
10077373 - 财政年份:2023
- 资助金额:
$ 13.86万 - 项目类别:
BEIS-Funded Programmes
SIMPLE THINGS FESTIVAL - REAL-TIME DIGITAL VENUE
SIMPLE THINGS FESTIVAL - 实时数字场地
- 批准号:
10069954 - 财政年份:2023
- 资助金额:
$ 13.86万 - 项目类别:
Collaborative R&D
Development of a new method for evaluating gut microbiota that can be evaluated in a simple, low-cost, and short time
开发一种评估肠道微生物群的新方法,可以在短时间内进行简单、低成本的评估
- 批准号:
23K08476 - 财政年份:2023
- 资助金额:
$ 13.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of simple soil erodibility testing method for evaluating progression potential of internal erosion in levees
开发简单的土壤可蚀性测试方法来评估堤坝内部侵蚀的进展潜力
- 批准号:
23H01499 - 财政年份:2023
- 资助金额:
$ 13.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of platform for non-invasive, rapid, and simple analysis of cytokine secretion from single cells
开发非侵入、快速、简单分析单细胞细胞因子分泌的平台
- 批准号:
23H01824 - 财政年份:2023
- 资助金额:
$ 13.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
STINMALE: Strategic Interactions with Machine-Learning Algorithms: The Role of Simple Beliefs
STINMALE:与机器学习算法的战略交互:简单信念的作用
- 批准号:
EP/Y033361/1 - 财政年份:2023
- 资助金额:
$ 13.86万 - 项目类别:
Research Grant
Collaborative Research: Promoting Children's Learning About Biological Variability by Leveraging Simple Card Games
合作研究:利用简单的纸牌游戏促进儿童了解生物变异性
- 批准号:
2300602 - 财政年份:2023
- 资助金额:
$ 13.86万 - 项目类别:
Continuing Grant














{{item.name}}会员




