Efficient Algorithms for Learning and Reasoning from Data
从数据中学习和推理的高效算法
基本信息
- 批准号:9616254
- 负责人:
- 金额:$ 35.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-10-15 至 2001-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research has as its goal the development of efficient, scalable and portable algorithms that allow learning and limited reasoning over very large repositories of data. The goal is to combine these algorithms into an environment that supports summarization of very large streams of data (data mining) and the drawing of reasonably accurate conclusions from these summaries, using probabilistic reasoning where appropriate. The following areas are being investigated: (1) Efficient algorithms for reasoning in probabilistic networks; (2) Efficient induction of provably accurate generalized decision trees; and (3) Incorporating knowledge in memory-based reasoning methods. Of particular interest are reasoning algorithms that perform queries and updates to data extremely efficiently, perhaps in time which is sublinear to the size of the original database, and learning algorithms that provide performance guarantees on the accuracy of the answers by giving a confidence rating with the answer to a query. The availability of high-speed, reliable, intelligent algorithms for learning and reasoning from data will have important applications in digital libraries, medical care, process control, and resource allocation, among other areas.
该研究的目标是开发高效,可扩展和可移植的算法,允许对非常大的数据库进行学习和有限的推理。 目标是将联合收割机这些算法组合到一个环境中,该环境支持对非常大的数据流进行汇总(数据挖掘),并在适当的情况下使用概率推理从这些汇总中得出合理准确的结论。 正在调查以下领域: (1)概率网络中推理的有效算法 (2)可证明准确的广义决策树的有效归纳;(3)基于记忆的推理方法中的知识表示。 特别感兴趣的是推理算法,执行查询和更新数据非常有效,也许在时间上是次线性的原始数据库的大小,和学习算法,提供性能保证的答案的准确性,给出一个置信度评级的答案查询。 用于从数据中学习和推理的高速、可靠、智能算法的可用性将在数字图书馆、医疗保健、过程控制和资源分配等领域中具有重要应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Kasif其他文献
Inductive Inference : An Axiomatic Approach ∗ Itzhak Gilboa and David Schmeidler
归纳推理:一种公理化方法 * Itzhak Gilboa 和 David Schmeidler
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
I. Gilboa;D. Schmeidler;Yoav Binyamini;Didier Dubois;D. Fudenberg;Bruno Jul;E. Karni;Simon Kasif;Daniel Lehmann;Sujoy Mukerji;R. Myerson;Klaus Nehring;Ariel Rubinstein;Lidror Troyanski;Peter Wakker;Peyton Young - 通讯作者:
Peyton Young
Towards a Constraint-Based Engineering Framework for Algorithm Design and Application
- DOI:
10.1023/a:1009719616574 - 发表时间:
1997-04-01 - 期刊:
- 影响因子:1.300
- 作者:
Simon Kasif - 通讯作者:
Simon Kasif
Term matching on a mesh-connected array of processors
- DOI:
10.1007/bf01530819 - 发表时间:
1995-06-01 - 期刊:
- 影响因子:1.000
- 作者:
Arthur L. Delcher;Simon Kasif - 通讯作者:
Simon Kasif
Predicting Malaria Interactome Classifications from Time-course Transcriptomic Data along the Intraerythrocytic Developmental Cycle
从红细胞内发育周期的时程转录组数据预测疟疾相互作用组分类
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Antonina Mitrofanova;Samantha Kleinberg;Jane Carlton;Simon Kasif;Bud Mishra - 通讯作者:
Bud Mishra
Biochemical networks: The evolution of gene annotation
生化网络:基因注释的演化
- DOI:
10.1038/nchembio.288 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:13.700
- 作者:
Simon Kasif;Martin Steffen - 通讯作者:
Martin Steffen
Simon Kasif的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Kasif', 18)}}的其他基金
ITR-(ASE+NHS)-(dmc): Rational Genomic Annotation Systems: Integration, Mining and Modeling of Biological Data
ITR-(ASE NHS)-(dmc):Rational 基因组注释系统:生物数据的集成、挖掘和建模
- 批准号:
0428715 - 财政年份:2004
- 资助金额:
$ 35.81万 - 项目类别:
Standard Grant
Comparative Genomic Analysis Using Evidence Integration Frameworks
使用证据集成框架进行比较基因组分析
- 批准号:
0239435 - 财政年份:2003
- 资助金额:
$ 35.81万 - 项目类别:
Continuing Grant
Efficient Algorithms for Learning and Reasoning from Data
从数据中学习和推理的高效算法
- 批准号:
0196442 - 财政年份:2001
- 资助金额:
$ 35.81万 - 项目类别:
Continuing Grant
KDI: Intelligent Computational Genomic Analysis
KDI:智能计算基因组分析
- 批准号:
0196227 - 财政年份:2000
- 资助金额:
$ 35.81万 - 项目类别:
Standard Grant
KDI: Intelligent Computational Genomic Analysis
KDI:智能计算基因组分析
- 批准号:
9980088 - 财政年份:1999
- 资助金额:
$ 35.81万 - 项目类别:
Standard Grant
SGER: Fast Queries and Updates in Probabilistic Networks
SGER:概率网络中的快速查询和更新
- 批准号:
9529227 - 财政年份:1995
- 资助金额:
$ 35.81万 - 项目类别:
Standard Grant
Constraint Solving and Matching: Parallel Algorithms and Applications
约束求解和匹配:并行算法和应用
- 批准号:
9220960 - 财政年份:1993
- 资助金额:
$ 35.81万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 35.81万 - 项目类别:
Continuing Grant
CIF: SMALL: Theoretical Foundations of Partially Observable Reinforcement Learning: Minimax Sample Complexity and Provably Efficient Algorithms
CIF:SMALL:部分可观察强化学习的理论基础:最小最大样本复杂性和可证明有效的算法
- 批准号:
2315725 - 财政年份:2023
- 资助金额:
$ 35.81万 - 项目类别:
Standard Grant
Robust and efficient statistical learning algorithms with applications in actuarial science
稳健高效的统计学习算法在精算科学中的应用
- 批准号:
RGPIN-2020-07064 - 财政年份:2022
- 资助金额:
$ 35.81万 - 项目类别:
Discovery Grants Program - Individual
Leveraging the unlabeled data for exploration and efficient learning algorithms
利用未标记的数据进行探索和高效的学习算法
- 批准号:
568951-2022 - 财政年份:2022
- 资助金额:
$ 35.81万 - 项目类别:
Postgraduate Scholarships - Doctoral
CAREER: From Shallow to Deep Representation Learning: Global Nonconvex Optimization Theories and Efficient Algorithms
职业:从浅层到深层表示学习:全局非凸优化理论和高效算法
- 批准号:
2143904 - 财政年份:2022
- 资助金额:
$ 35.81万 - 项目类别:
Continuing Grant
Exploring Efficient Automated Design Choices for Robust Machine Learning Algorithms
探索稳健的机器学习算法的高效自动化设计选择
- 批准号:
2748823 - 财政年份:2022
- 资助金额:
$ 35.81万 - 项目类别:
Studentship
Towards more efficient machine learning algorithms: theory and practice
迈向更高效的机器学习算法:理论与实践
- 批准号:
RGPIN-2016-05942 - 财政年份:2021
- 资助金额:
$ 35.81万 - 项目类别:
Discovery Grants Program - Individual
Robust and efficient statistical learning algorithms with applications in actuarial science
稳健高效的统计学习算法在精算科学中的应用
- 批准号:
RGPIN-2020-07064 - 财政年份:2021
- 资助金额:
$ 35.81万 - 项目类别:
Discovery Grants Program - Individual
Rethinking machine learning algorithms and CAD tools to rapidly create efficient FPGA implementations
重新思考机器学习算法和 CAD 工具以快速创建高效的 FPGA 实现
- 批准号:
544228-2019 - 财政年份:2021
- 资助金额:
$ 35.81万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Robust and efficient statistical learning algorithms with applications in actuarial science
稳健高效的统计学习算法在精算科学中的应用
- 批准号:
RGPIN-2020-07064 - 财政年份:2020
- 资助金额:
$ 35.81万 - 项目类别:
Discovery Grants Program - Individual