High Performance Computing for Large Dynamical Systems

大型动态系统的高性能计算

基本信息

  • 批准号:
    9619763
  • 负责人:
  • 金额:
    $ 7.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-02-15 至 2000-01-31
  • 项目状态:
    已结题

项目摘要

This project investigates high performance algorithms in the areas of model reduction algorithms for dynamical linear systems, eigenproblem solvers, and iterative methods for sparse nonsymmetric linear systems with one or multiple right-hand side vectors. The model reduction work is based on the rational Lanczos algorithm which performs multipoint moment matching-based model reduction with automatic point selection from a specified grid. It uses a novel shifting strategy which exploits a mix of imaginary and real positive scalar values that provide a multiscale view of the frequency response of the dynamical system being modeled. The restriction to moment-matched reduced order models will be relaxed in order to improve the efficiency of the model production. This will entail the development of new error modeling techniques as well as the assessment of the effect of the use of iterative methods to approximately solve the linear systems that occur in each iteration of rational approximation algorithms. This will also drive the development of new preconditioning and iterative method strategies. A strategy for point placement (rather than point selection from a predetermined grid) will be developed and used in order to improve the accuracy of the reduced order model and to drive a load balancing strategy for the large grain parallel processing in a multilevel parallelism implementation. In the work on eigenproblems, technology will be transferred and adapted from the rational Lanczos domain to Krylov-based eigenproblem solvers. This includes adapting the model reduction shift strategy to yield a multilevel approach to locate appropriate sections of the complex plane in which eigenvalues reside. The choice of spaces used to form the projector will also be updated via rational Lanczos technology. A Gershgorin disk-based alternative to Krylov-based approaches will also be studied. The approach is a generalization and improvement of work by Varga and other s. The methods natural multilevel parallelism will be analyzed and exploited in an experimental implementation. The area of nonsymmetric sparse linear system solving via preconditioned iterative methods supports the advances in the two areas above, and also contributes to the state-of-the-art in numerical algorithms. Three basic tasks will be undertaken. The first is to continue work on a robust parallel preconditioned iterative method-based package for the solution of nonsymmetric systems. This work will build on earlier efforts on the EN-like family of methods, partitioned row projection schemes, and an accelerated block Stiefel iteration adapted to nonsymmetric systems. Preconditioners based on eigenvalue deflation, incomplete orthogonalization, and modified Krylov methods will be considered. The second system linear system solving task that will be addressed is the development and analysis of a family of block EN-like methods for linear systems with multiple right-hand side vectors encountered in multiple-input-multiple-output dynamical systems and applications such as electromagnetics. Finally, the linear system solvers above will be adapted to the situation encountered in model reduction -- multiple linear systems defined by a matrix pencil (A,E), and a set of scalar shifts with associated right-hand sides.
本项目研究动态线性系统的模型降阶算法、特征问题求解器和具有一个或多个右侧向量的稀疏非对称线性系统的迭代方法等领域的高性能算法。 模型降阶工作是基于合理的Lanczos算法,该算法执行多点矩匹配为基础的模型降阶与自动点选择从指定的网格。 它使用了一种新的移位策略,利用虚的和真实的正标量值的混合,提供了一个多尺度的动态系统的频率响应的视图建模。 为了提高模型生产的效率,将放宽对力矩匹配降阶模型的限制。 这将需要开发新的误差建模技术,以及评估使用迭代方法近似求解有理逼近算法每次迭代中出现的线性系统的效果。 这也将推动新的预处理和迭代方法策略的发展。 将开发和使用一种用于点放置(而不是从预定网格中选择点)的策略,以提高降阶模型的准确性,并在多级并行实现中驱动用于大粒度并行处理的负载平衡策略。 在本征问题的工作中,技术将从有理Lanczos域转移到基于Krylov的本征问题求解器。 这包括调整模型简化移位策略以产生多层次方法来定位特征值所在的复平面的适当部分。 用于形成投影机的空间的选择也将通过合理的Lanczos技术进行更新。 一个基于Gershgorin磁盘的替代Krylov为基础的方法也将进行研究。 该方法是对Varga等人工作的推广和改进。 自然的多级并行的方法将被分析和利用的实验实现。 非对称稀疏线性方程组的预条件迭代求解支持了上述两个领域的进展,也为数值算法的发展做出了贡献。 将执行三项基本任务。 首先是继续工作的一个强大的并行预处理迭代方法为基础的包的解决方案的非对称系统。 这项工作将建立在早期的努力EN-样家庭的方法,分区行投影计划,并加速块Stiefel迭代适应非对称系统。 预条件的基础上特征值紧缩,不完全正交化,和修改后的Krylov方法将被考虑。 第二个系统的线性系统解决的任务,将被解决的是一个家庭的块EN类方法的发展和分析的线性系统中遇到的多个右手侧向量的多输入多输出动态系统和应用,如电磁学。 最后,上面的线性系统求解器将适用于模型简化中遇到的情况-由矩阵束(A,E)定义的多个线性系统,以及一组具有相关右侧的标量移位。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ahmed Sameh其他文献

Development of a Balanced 3D Translational Interconnected Manipulator With Solely Rotary Joints/Actuators and Free-Internal-Singularity Workspace
开发具有单独旋转关节/执行器和自由内部奇点工作空间的平衡 3D 平移互连机械臂
  • DOI:
    10.1109/access.2021.3136779
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Ahmed Sameh;Mohamed Fanni;Victor Parque;Abdelfatah M. Mohamed
  • 通讯作者:
    Abdelfatah M. Mohamed
Automatic Tag cloud Realization of web search results using Incremental Clustering By Directions Algorithm
自动标签云使用增量聚类方向算法实现网页搜索结果
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ramesh singh;D. Dhingra;Aman Arora;Ahmed Sameh;Amar Kadray;Jung;Ren;Shie;P. A. Chirita;C. S. Firan
  • 通讯作者:
    C. S. Firan
International Journal of Video& Image Processing and Network Security Calibrating Camera Shake Photographs Using Parallel De-convolution
国际视频杂志
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ahmed Sameh;Nazzly El Shazzly
  • 通讯作者:
    Nazzly El Shazzly
Brain Decoding using EEG Signals: Detection for Human Daily Activities
使用脑电图信号解码大脑:检测人类日常活动
Parallel Algorithms for Large-Scale Nanoelectronics Simulations Using NESSIE
  • DOI:
    10.1007/s10825-004-7078-1
  • 发表时间:
    2004-10-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Eric Polizzi;Ahmed Sameh
  • 通讯作者:
    Ahmed Sameh

Ahmed Sameh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ahmed Sameh', 18)}}的其他基金

SI2-SSE Collaborative Research: SPIKE-An Implementation of a Recursive Divide-and-Conquer Parallel Strategy for Solving Large Systems of Liner Equations
SI2-SSE 协作研究:SPIKE-求解大型线性方程组的递归分治并行策略的实现
  • 批准号:
    1147422
  • 财政年份:
    2012
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant
CSR: Large: Collaborative Research: Kali: A System for Sequential Programming of Multicore Processors
CSR:大型:协作研究:Kali:多核处理器顺序编程系统
  • 批准号:
    1111691
  • 财政年份:
    2011
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Developing A Robust Parallel Hybrid System Solver
协作研究:开发鲁棒的并行混合系统求解器
  • 批准号:
    0635169
  • 财政年份:
    2006
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant
ITR/AP: Collaborative Research: Model Reduction of Dynamical Systems for Real-time Control
ITR/AP:协作研究:用于实时控制的动态系统模型简化
  • 批准号:
    0325227
  • 财政年份:
    2003
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Continuing Grant
Efficent Algorithms for Large-Scale Dynamical Systems
大规模动力系统的高效算法
  • 批准号:
    9912388
  • 财政年份:
    2000
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Continuing Grant
Innovative Algorithms and Techniques for Large Scale Simulations
大规模模拟的创新算法和技术
  • 批准号:
    9972533
  • 财政年份:
    1999
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant
CISE PostDoc: Computational Methods in VLSI Design
CISE博士后:VLSI设计中的计算方法
  • 批准号:
    9805743
  • 财政年份:
    1998
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Computational Environment for Scientific Computing
MRI:获取科学计算的计算环境
  • 批准号:
    9871053
  • 财政年份:
    1998
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant
Acquisition of a Workstation Cluster for Research in High - Performance Computing
采购工作站集群用于高性能计算研究
  • 批准号:
    9414015
  • 财政年份:
    1994
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Hierarchically Parallel Algorithms for Portable and Scalable Performance
协作研究:可移植和可扩展性能的分层并行算法
  • 批准号:
    9396332
  • 财政年份:
    1993
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: OAC: Core: Harvesting Idle Resources Safely and Timely for Large-scale AI Applications in High-Performance Computing Systems
合作研究:OAC:核心:安全及时地收集闲置资源,用于高性能计算系统中的大规模人工智能应用
  • 批准号:
    2403399
  • 财政年份:
    2024
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC: Core: Harvesting Idle Resources Safely and Timely for Large-scale AI Applications in High-Performance Computing Systems
合作研究:OAC:核心:安全及时地收集闲置资源,用于高性能计算系统中的大规模人工智能应用
  • 批准号:
    2403398
  • 财政年份:
    2024
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant
OAC Core: High Performance Computing Algorithms and Software for large-scale Mass Spectrometry based Omics
OAC Core:基于大规模质谱组学的高性能计算算法和软件
  • 批准号:
    2312599
  • 财政年份:
    2023
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant
MRI Acquisition of a High Performance Large Memory Computing Cluster for Large Scale Data-Driven Research
用于大规模数据驱动研究的高性能大内存计算集群的 MRI 采集
  • 批准号:
    1919452
  • 财政年份:
    2019
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant
CSR: Large: VarSys: Managing Variability in High-Performance Computing Systems
CSR:大型:VarSys:管理高性能计算系统的可变性
  • 批准号:
    1838271
  • 财政年份:
    2018
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Continuing Grant
Smart Partitioning Based Large-Scale Power System Analysis on High-Performance Computing Platform: Modeling, Algorithms, and Computations
高性能计算平台上基于智能分区的大规模电力系统分析:建模、算法和计算
  • 批准号:
    1711449
  • 财政年份:
    2017
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant
CSR: Large: VarSys: Managing Variability in High-Performance Computing Systems
CSR:大型:VarSys:管理高性能计算系统的可变性
  • 批准号:
    1565314
  • 财政年份:
    2016
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Continuing Grant
High-performance computing environment to leverage deep learning technology for large biomedical and neuroimaging data
高性能计算环境利用深度学习技术处理大型生物医学和神经影像数据
  • 批准号:
    RTI-2016-00516
  • 财政年份:
    2015
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Research Tools and Instruments
CSR: Small: Automatic Storage and Network Contention Management for Large-scale High-performance Computing Systems
CSR:小型:大规模高性能计算系统的自动存储和网络争用管理
  • 批准号:
    1528179
  • 财政年份:
    2015
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant
CSR: EAGER: An Integrated Framework for Performance and Reliability in Large-scaled Computing Systems
CSR:EAGER:大规模计算系统性能和可靠性的集成框架
  • 批准号:
    1251129
  • 财政年份:
    2012
  • 资助金额:
    $ 7.54万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了