Circle Packing: Discrete Conformal Geometry

圆堆积:离散共形几何

基本信息

  • 批准号:
    9622803
  • 负责人:
  • 金额:
    $ 4.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1996
  • 资助国家:
    美国
  • 起止时间:
    1996-08-01 至 1999-07-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT Proposal: DMS-962280 PI: Stephenson Stephenson proposes to study fundamental properties of circle packings and the geometric structures they induce. Circle packings are configurations of circles with prescribed patterns of tangency. Until recently Stephenson has concentrated on the development of connections with classical analytic functions, contributing to what is now a very comprehensive and geometrically faithful "discrete" analytic function theory. His attention has now turned in other directions --- partly in towards the geometric foundations and partly out towards applications. The current proposal concentrates on three main issues: (1) existence and uniqueness of branched packings on the sphere (equivalently, of branched hyperbolic polyhedra in the ball); (2) properties of and uses for tailored random walks on circle packings; and (3) circle induced geometries in combinatoric settings, such as combinatorial Riemann mapping, Grothendieck dessins, knot projections, hyperbolic groups, and graph embedding. Of particular note is the effort by the Stephenson and his collaborators to introduce "inversive distances" into circle packing. Also, he continues numerical and experimental approaches to investigating phenomena in circle packing through use of a sophisticated software package, "test bench". Circle packing is a relatively new topic in mathematics which involves the study of configurations of circles with specified patterns of tangency. It seems an odd and artificial topic at first, but turns out to be surprisingly rich. Without giving technical details, one can say that in a circle packing the local combinatoric information about contacts between circles turns into rigid global geometric information on the overall configuration. The unique value in this approach lies in the fact that these packings turn out to carry in "discreet" packets much of the key geometric information normally described via "continuous" equations and formulas. This is especially important as we move towards the more discrete model of the world required by computers. Among the important areas of study are analytic and harmonic function theory -- crucial, for instance, in modeling of fluid flow, electrical circuits, diffusion processes, and so forth. Results are now being proven using circle packing which could not be established or were even unanticipated in the classical theories. Moreover, circle packing gives opportunities for new results and insights because it permits computer experimentation. Applications have begun to emerge in diverse areas of mathematics and in computer science; for instance, circle packings are good for graph embedding and for various computer visualization tasks, such as 3-D modeling. And the classical and discrete mathematical theory which underlies these advances is of importance.
摘要提案:DMS-962280 PI:斯蒂芬森 斯蒂芬森提出研究圆填充的基本性质及其几何结构, 诱导。圆填充是具有规定的相切模式的圆的配置。直到最近斯蒂芬森一直集中在发展的联系与经典的解析函数,有助于什么是现在一个非常全面和几何忠实的“离散”解析函数理论。他的注意力现在已经转向其他方向-部分在几何基础上,部分在应用上。目前的建议集中在三个主要问题:(1)存在性和唯一性的分支包装上的球(相当于,分支双曲多面体在球);(2)性质和用途的裁剪随机游动的圆包装;和(3)圆诱导几何在组合设置,如组合黎曼映射,Grothendieck dessins,结投影,双曲群,和图嵌入。特别值得注意的是努力由斯蒂芬森和他的合作者介绍“反演距离”到圆包装。此外,他继续通过使用一个复杂的软件包,“测试台”的数值和实验方法来调查圆包装现象。 圆填充是数学中一个相对较新的课题,它涉及对具有特定相切模式的圆的构型的研究。这似乎是一个奇怪的和人为的话题在第一,但结果是令人惊讶的丰富。在不给出技术细节的情况下,可以说,在圆包装中,关于圆之间接触的局部组合信息变成关于整体配置的刚性全局几何信息。这种方法的独特价值在于这样一个事实,即这些包装原来携带在“离散”包通常通过“连续”方程和公式描述的关键几何信息。当我们转向计算机所需的更加离散的世界模型时,这一点尤其重要。其中重要的研究领域是分析和调和函数理论-至关重要的,例如,在流体流动,电路,扩散过程等建模。结果现在正在证明使用循环包装不能建立或甚至是在经典理论中没有预料到的。此外,圆包装为新的结果和见解提供了机会,因为它允许计算机实验。在数学和计算机科学的不同领域已经开始出现应用;例如,圆填充适用于图形嵌入和各种计算机可视化任务,如3D建模。 这些进展背后的经典和离散数学理论是重要的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenneth Stephenson其他文献

Omitted values of singular inner functions.
省略奇异内部函数的值。
  • DOI:
  • 发表时间:
    1978
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kenneth Stephenson
  • 通讯作者:
    Kenneth Stephenson
CORTICAL SURFACE FLATTENING : A DISCRETE CONFORMAL APPROACH USING CIRCLE PACKINGS
皮质表面平整:使用圆形填料的离散保形方法
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Hurdal;Kenneth Stephenson;Philip L. Bowers;D. Sumners;D. Rottenberg
  • 通讯作者:
    D. Rottenberg
Circle packings in different geometries
不同几何形状的圆形填料
  • DOI:
    10.2748/tmj/1178227533
  • 发表时间:
    1991
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    A. Beardon;Kenneth Stephenson
  • 通讯作者:
    Kenneth Stephenson
Construction of an inner function in the little Bloch space
Circle packings in the approximation of conformal mappings

Kenneth Stephenson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenneth Stephenson', 18)}}的其他基金

The 2010 Barrett Lectures: Discrete Differential Geometry and Applications
2010 年 Barrett 讲座:离散微分几何及其应用
  • 批准号:
    1001839
  • 财政年份:
    2010
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Complex Analysis Projects with Accompanying Applets
协作研究:带有附带小程序的复杂分析项目
  • 批准号:
    0632969
  • 财政年份:
    2007
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Standard Grant
Computational Uniformization
计算统一化
  • 批准号:
    0609715
  • 财政年份:
    2006
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Conformal Mapping and Scientific Visualization
协作研究:计算共形绘图和科学可视化
  • 批准号:
    0101324
  • 财政年份:
    2001
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Standard Grant
Computational Discrete Conformal Geometry and Applications
计算离散共形几何及其应用
  • 批准号:
    9972769
  • 财政年份:
    1999
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Standard Grant
Discrete Conformal Geometry, 1998 Barrett Memorial Lectures
离散共形几何,1998 年巴雷特纪念讲座
  • 批准号:
    9732870
  • 财政年份:
    1998
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Discrete Analytic Function Theory Via Circle Packing
数学科学:通过圆堆积的离散解析函数理论
  • 批准号:
    9303135
  • 财政年份:
    1993
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Circle Packings and Complex Analysis
数学科学:圆堆积和复分析
  • 批准号:
    9002397
  • 财政年份:
    1990
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Continuing grant
Mathematical Sciences: The 1988 John H. Barrett Memorial Lectures
数学科学:1988 年约翰·H·巴雷特纪念讲座
  • 批准号:
    8801524
  • 财政年份:
    1988
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Harmonic Measure on Riemann Surfaces
数学科学:黎曼曲面上的调和测度
  • 批准号:
    8803452
  • 财政年份:
    1988
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Continuing grant

相似国自然基金

等圆及长方体Packing与一般NP难度问题的高效能求解- - - - 拟物拟人算法
  • 批准号:
    60773194
  • 批准年份:
    2007
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目
Circle Packing理论与正规族理论研究
  • 批准号:
    10701084
  • 批准年份:
    2007
  • 资助金额:
    15.0 万元
  • 项目类别:
    青年科学基金项目
矩形Packing基本问题的高性能求解算法
  • 批准号:
    10471051
  • 批准年份:
    2004
  • 资助金额:
    17.0 万元
  • 项目类别:
    面上项目

相似海外基金

Biosensing of chromatin packing in live cells
活细胞染色质堆积的生物传感
  • 批准号:
    2325317
  • 财政年份:
    2023
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Standard Grant
Optimisation of a vibro-packing process through simulation and experiment
通过模拟和实验优化振动包装工艺
  • 批准号:
    2889985
  • 财政年份:
    2023
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Studentship
SBIR Phase I: Developing an Automated Outbound Packing System
SBIR 第一阶段:开发自动化出库包装系统
  • 批准号:
    2223089
  • 财政年份:
    2023
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Standard Grant
Development and application of novel highly-functional packing materials for liquid chromatography using sigma-hole interactions
利用西格玛孔相互作用的新型高效液相色谱填料的开发与应用
  • 批准号:
    23K06090
  • 财政年份:
    2023
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New theoretical and simulation approach for understanding packing structures of soft self-adjusting objects
用于理解软自调节物体堆积结构的新理论和模拟方法
  • 批准号:
    2230946
  • 财政年份:
    2023
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Standard Grant
Combinatorial structures on packing, covering, and configulation on hypergraphs
超图上的打包、覆盖和配置的组合结构
  • 批准号:
    22K03398
  • 财政年份:
    2022
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Picking, packing and plucking: International Migration in the post Brexit world
采摘、包装和采摘:英国脱欧后世界的国际移民
  • 批准号:
    ES/X005720/1
  • 财政年份:
    2022
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Fellowship
Determination of mitochondrial lipid packing in healthy and cancerous cell lines
健康细胞系和癌细胞系中线粒体脂质堆积的测定
  • 批准号:
    580248-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Alliance Grants
Intrinsic curvature induced packing heterogeneity and non-uniform distribution of cholesterol and Abeta peptide in lipid bilayers
固有曲率诱导脂质双层中胆固醇和 Abeta 肽的堆积异质性和不均匀分布
  • 批准号:
    10333107
  • 财政年份:
    2022
  • 资助金额:
    $ 4.52万
  • 项目类别:
Incredipack - robotic packing for delicate produce II
Incredipack - 用于精致产品的机器人包装 II
  • 批准号:
    830281
  • 财政年份:
    2022
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Innovation Loans
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了