Computational Uniformization

计算统一化

基本信息

  • 批准号:
    0609715
  • 负责人:
  • 金额:
    $ 20.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-06-15 至 2010-05-31
  • 项目状态:
    已结题

项目摘要

The investigator applies emerging computational methods in circlepacking to study conformal structures on surfaces, with particularemphasis on complex, nonplanar surfaces. The global realization ofconformal structures which are local in nature is known classically asuniformization. Circle packing methods have led to notions of discreteuniformization which both mimic and approximate the classical notion.However, the geometric nature of the discretization raisescomputational issues outside traditional numerical mathematics. Inparticular, uniformization is a self-assembly process which isextremely challenging in practice --- for instance, with circlepackings containing millions of circles. In the central computationalwork, the investigator implements a recursive framework for managingthis self-assembly which avoids global distortions while accommodatingefficient parallel implementation. The computational issues are notconsidered in isolation, but rather in relation to ongoingapplications by the investigator and his collaborators to topicsincluding brain imaging, conformal tiling, dessins d'enfants, andconformal welding. Of the many theoretical issues raised inapplications and experiments, the investigator pays special attentionto the notion of ``flow uniformization'' and to its potential use indiscrete conformal welding and shape analysis.Surfaces --- a smooth soap film, the convoluted gray matter of thebrain, a faceted crystal lattice --- are ubiquitous in the natural andphysical sciences, engineering, computer visualization, and scores ofother areas. The tools for studying and describing surfacesmathematically came out of work in the nineteenth century, with aparticularly rich geometric vein associated with angular measure goingby the name "conformal structure". Among the most celebrated results inmathematics is the Riemann mapping theorem of 1851 which proved thatevery surface with a conformal structure, no matter how complicated,can be identified with one of three very simple familiar surfaces--- a ball, a plane, or a disc --- in a way that preserves conformalstructure, that is, that preserves angles. Wonderful as this theoryis, and despite the availability of huge computational resources, ithas been only in the last decade that new mathematics in the form ofcircle packing has provided a practical means for actually realizingRiemann's theorem. The investigator develops the mathematical andcomputational aspects of circle packing in the context of severalapplications. Among these are the flattening of human brain corticalsurfaces to aid analysis by neuroscientists, the study of planeshapes through a process known as conformal welding for use incomputer vision, and the construction of mathematical Riemann surfacesin various topics which are now amenable to experimentationfor the first time.
调查人员适用于新兴的计算方法在circlepacking研究表面上的保形结构,particularembranes在复杂的,非平面的表面。 局部共形结构的全局实现在经典上称为一致化。圆填充方法导致了离散均匀化的概念,它既模仿又近似于经典概念。然而,离散化的几何性质提出了传统数值数学之外的计算问题。特别是,均匀化是一个自组装过程,在实践中极具挑战性-例如,包含数百万个圆的圆包装。在中心计算工作中,研究者实现了一个递归框架来管理这种自组装,从而避免了全局扭曲,同时提高了并行实现的效率。计算问题不是孤立地考虑的,而是与研究者及其合作者正在进行的应用有关,包括脑成像、适形铺瓦、儿童死亡和适形焊接。在应用和实验中提出的许多理论问题中,研究者特别注意“流动均匀化”的概念及其在离散保形焊接和形状分析中的潜在用途。表面--光滑的肥皂膜,大脑的回旋灰质,多面晶格--在自然和物理科学,工程学,计算机可视化和许多其他领域中无处不在。数学上研究和描述曲面的工具出现在世纪,与角测量相关的非常丰富的几何脉络被称为“共形结构”。其中最著名的结果在数学是黎曼映射定理的1851年证明thatevery表面的共形结构,无论多么复杂,可以确定的一个非常简单的熟悉的表面--一个球,一个平面,或一个磁盘--在某种程度上保持conformalstructure,即保持角度。尽管这个理论很奇妙,尽管有巨大的计算资源,但直到最近十年,以圆填充形式出现的新数学才为实际实现黎曼定理提供了一种实用的方法。调查员开发的数学和计算方面的圆包装的上下文中的几个应用程序。其中包括人类大脑皮层表面的扁平化,以帮助神经科学家进行分析,通过一种被称为保形焊接的过程来研究平面形状,用于计算机视觉,以及在各种主题中构建数学黎曼曲面,现在第一次可以进行实验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenneth Stephenson其他文献

Omitted values of singular inner functions.
省略奇异内部函数的值。
  • DOI:
  • 发表时间:
    1978
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kenneth Stephenson
  • 通讯作者:
    Kenneth Stephenson
CORTICAL SURFACE FLATTENING : A DISCRETE CONFORMAL APPROACH USING CIRCLE PACKINGS
皮质表面平整:使用圆形填料的离散保形方法
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Hurdal;Kenneth Stephenson;Philip L. Bowers;D. Sumners;D. Rottenberg
  • 通讯作者:
    D. Rottenberg
Circle packings in different geometries
不同几何形状的圆形填料
  • DOI:
    10.2748/tmj/1178227533
  • 发表时间:
    1991
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    A. Beardon;Kenneth Stephenson
  • 通讯作者:
    Kenneth Stephenson
Construction of an inner function in the little Bloch space
Circle packings in the approximation of conformal mappings

Kenneth Stephenson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenneth Stephenson', 18)}}的其他基金

The 2010 Barrett Lectures: Discrete Differential Geometry and Applications
2010 年 Barrett 讲座:离散微分几何及其应用
  • 批准号:
    1001839
  • 财政年份:
    2010
  • 资助金额:
    $ 20.16万
  • 项目类别:
    Standard Grant
Collaborative Research: Complex Analysis Projects with Accompanying Applets
协作研究:带有附带小程序的复杂分析项目
  • 批准号:
    0632969
  • 财政年份:
    2007
  • 资助金额:
    $ 20.16万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Conformal Mapping and Scientific Visualization
协作研究:计算共形绘图和科学可视化
  • 批准号:
    0101324
  • 财政年份:
    2001
  • 资助金额:
    $ 20.16万
  • 项目类别:
    Standard Grant
Computational Discrete Conformal Geometry and Applications
计算离散共形几何及其应用
  • 批准号:
    9972769
  • 财政年份:
    1999
  • 资助金额:
    $ 20.16万
  • 项目类别:
    Standard Grant
Discrete Conformal Geometry, 1998 Barrett Memorial Lectures
离散共形几何,1998 年巴雷特纪念讲座
  • 批准号:
    9732870
  • 财政年份:
    1998
  • 资助金额:
    $ 20.16万
  • 项目类别:
    Standard Grant
Circle Packing: Discrete Conformal Geometry
圆堆积:离散共形几何
  • 批准号:
    9622803
  • 财政年份:
    1996
  • 资助金额:
    $ 20.16万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Discrete Analytic Function Theory Via Circle Packing
数学科学:通过圆堆积的离散解析函数理论
  • 批准号:
    9303135
  • 财政年份:
    1993
  • 资助金额:
    $ 20.16万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Circle Packings and Complex Analysis
数学科学:圆堆积和复分析
  • 批准号:
    9002397
  • 财政年份:
    1990
  • 资助金额:
    $ 20.16万
  • 项目类别:
    Continuing grant
Mathematical Sciences: The 1988 John H. Barrett Memorial Lectures
数学科学:1988 年约翰·H·巴雷特纪念讲座
  • 批准号:
    8801524
  • 财政年份:
    1988
  • 资助金额:
    $ 20.16万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Harmonic Measure on Riemann Surfaces
数学科学:黎曼曲面上的调和测度
  • 批准号:
    8803452
  • 财政年份:
    1988
  • 资助金额:
    $ 20.16万
  • 项目类别:
    Continuing grant

相似海外基金

Dynamics and Hodge theory: Uniformization and Bialgebraic Geometry
动力学和霍奇理论:均匀化和双代数几何
  • 批准号:
    2305394
  • 财政年份:
    2023
  • 资助金额:
    $ 20.16万
  • 项目类别:
    Standard Grant
Uniformization of non-uniform geometries
非均匀几何形状的均匀化
  • 批准号:
    2247364
  • 财政年份:
    2023
  • 资助金额:
    $ 20.16万
  • 项目类别:
    Standard Grant
Uniformization of Surfaces and Mapping Problems in Metric Spaces
度量空间中曲面的均匀化和映射问题
  • 批准号:
    2246894
  • 财政年份:
    2023
  • 资助金额:
    $ 20.16万
  • 项目类别:
    Standard Grant
Uniformization and Rigidity in Metric Surfaces and in the Complex Plane
公制曲面和复平面中的均匀化和刚度
  • 批准号:
    2246485
  • 财政年份:
    2023
  • 资助金额:
    $ 20.16万
  • 项目类别:
    Standard Grant
Uniformization of Surfaces and Mapping Problems in Metric Spaces
度量空间中曲面的均匀化和映射问题
  • 批准号:
    2413156
  • 财政年份:
    2023
  • 资助金额:
    $ 20.16万
  • 项目类别:
    Standard Grant
Uniformization of 4-orbifolds and gauge theory
四环折叠与规范理论的均匀化
  • 批准号:
    22K03322
  • 财政年份:
    2022
  • 资助金额:
    $ 20.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Uniformization of Metric Spaces and Quasiconformal Removability
度量空间的均匀化和拟共形可去除性
  • 批准号:
    2000096
  • 财政年份:
    2020
  • 资助金额:
    $ 20.16万
  • 项目类别:
    Standard Grant
Moduli spaces of flat connections and uniformization of 4-orbifolds
平连接的模空间和四环折的均匀化
  • 批准号:
    18K03289
  • 财政年份:
    2018
  • 资助金额:
    $ 20.16万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CIF: Small: Collaborative Research:Towards more Secure Systems: Uniformization for Secrecy
CIF:小型:协作研究:迈向更安全的系统:保密统一化
  • 批准号:
    1527270
  • 财政年份:
    2015
  • 资助金额:
    $ 20.16万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research:Towards more Secure Systems: Uniformization for Secrecy
CIF:小型:协作研究:迈向更安全的系统:保密统一化
  • 批准号:
    1527074
  • 财政年份:
    2015
  • 资助金额:
    $ 20.16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了