Ergodic Theory and Symbolic Dynamics
遍历理论和符号动力学
基本信息
- 批准号:9622866
- 负责人:
- 金额:$ 7.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-08-01 至 2000-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT: Lind/Tuncel Lind will investigate various aspects of several dimensional actions, including zeta functions and directional entropies. Emphasis will be placed on the determination of the expansive sets, how the dynamics of one component of the expansive set may influence the dynamics in another, and how finite type assumptions may change the answers. He will further probe the coincidence entropies of certain actions with the growth rate for spanning trees of related infinite graphs. He will also pursue a link with electrical networks suggested by his discovery of a new invariant for Markov shifts arising from consideration of spanning trees. Tuncel will work on two-dimensional shifts of finite type. He has observed that certain matrix equations determine the entropy whenever they have (positive) solutions, and that similar inequalities give bounds on entropy. He will pursue the characterization of conjugacy classes for which the equations have solutions, the possibility of improving the bounds by state-splitting, and the use of the inequalities in coding algorithms related to holographic data storage. He will also continue his analysis of Markov chains and their classifications, with emphasis on the development of dynamical invariants and coding methods for handling near-boundary constraints. Traditional problems of encoding data have focused on one-dimensional sequences, such as those found on computer disk drives or (in spiral form) on compact audio discs. In such situations physical constraints mean that, for efficient encoding, arbitrary data must be encoded into data subject to constraints. For instance data on a compact audio disk must have the property that between consecutive 1's there are at least two, but no more that seven, 0's. Symbolic dynamics provides that mathematical framework for discovering and investigating methods of encoding that have practical implications. More recently both industrial and research mathematicians have been studying higher-dimen sional versions of these problems. Industry is interested, for example, in holographic data storage where information is spread over a three-dimensional cube. Research mathematicians have been discovering fascinating new phenomena in this area, in particular some rich connections with the seemingly unrelated fields of commutative algebra and algebraic geometry. The investigators will continue their work with the higher-dimensional theory, with emphasis on ways of measuring information and a study of periodic structures.
摘要:Lind/Tuncel Lind将研究几个维度作用的各个方面,包括zeta函数和方向熵。重点将放在膨胀集的确定上,膨胀集的一个组成部分的动态如何影响另一个组成部分的动态,以及有限类型假设如何改变答案。他将进一步探讨相关无限图的生成树的某些作用的符合熵与增长率的关系。他还将研究与电网络的联系,这是由于他发现了一个新的不变量,用于考虑生成树引起的马尔可夫位移。Tuncel将处理有限类型的二维移位。他观察到,当某些矩阵方程有(正)解时,它们就决定了熵,并且类似的不等式给出了熵的界限。他将继续研究方程有解的共轭类的特征,通过状态分裂改善边界的可能性,以及在与全息数据存储相关的编码算法中使用不等式。他还将继续他对马尔可夫链及其分类的分析,重点是动态不变量的发展和处理近边界约束的编码方法。传统的数据编码问题集中在一维序列上,例如在计算机磁盘驱动器或(螺旋形式)压缩音频光盘上发现的序列。在这种情况下,物理约束意味着,为了有效编码,必须将任意数据编码为受约束的数据。例如,压缩音频磁盘上的数据必须具有这样的属性:在连续的1之间至少有两个0,但不能超过7个0。符号动力学为发现和研究具有实际意义的编码方法提供了数学框架。最近,工业数学家和科研数学家都在研究这些问题的高维版本。例如,工业界对全息数据存储感兴趣,其中信息分布在三维立方体上。数学家们在这一领域不断发现令人着迷的新现象,特别是与交换代数和代数几何这两个看似无关的领域之间的一些丰富联系。研究人员将继续研究高维理论,重点是测量信息的方法和周期结构的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Douglas Lind其他文献
The entropies of renewal systems
- DOI:
10.1007/bf02787181 - 发表时间:
1991-02-01 - 期刊:
- 影响因子:0.800
- 作者:
Jacob Goldberger;Douglas Lind;Meir Smorodinsky - 通讯作者:
Meir Smorodinsky
Divisibility of integer laurent polynomials, homoclinic points, and lacunary independence
- DOI:
10.1007/s13226-024-00650-z - 发表时间:
2024-07-06 - 期刊:
- 影响因子:0.500
- 作者:
Douglas Lind;Klaus Schmidt - 通讯作者:
Klaus Schmidt
Decimation limits of principal algebraic ℤd-actions
- DOI:
10.1007/s11856-024-2676-z - 发表时间:
2024-10-28 - 期刊:
- 影响因子:0.800
- 作者:
Elizaveta Arzhakova;Douglas Lind;Klaus Schmidt;Evgeny Verbitskiy - 通讯作者:
Evgeny Verbitskiy
Bernoullicity of solenoidal automorphisms and global fields
- DOI:
10.1007/bf02772981 - 发表时间:
1994-02-01 - 期刊:
- 影响因子:0.800
- 作者:
Douglas Lind;Klaus Schmidt - 通讯作者:
Klaus Schmidt
Douglas Lind的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Douglas Lind', 18)}}的其他基金
Current Trends in Dynamical Systems and Bowen's Legacy
动力系统的当前趋势和鲍文的遗产
- 批准号:
1665537 - 财政年份:2017
- 资助金额:
$ 7.96万 - 项目类别:
Standard Grant
Travel Support for the Second PRIMA Congress
第二届 PRIMA 大会的差旅支持
- 批准号:
1244294 - 财政年份:2012
- 资助金额:
$ 7.96万 - 项目类别:
Standard Grant
Special Meetings: Travel support for the PRIMA Congress
特别会议:PRIMA 大会的差旅支持
- 批准号:
0852273 - 财政年份:2009
- 资助金额:
$ 7.96万 - 项目类别:
Standard Grant
Advisory Workshop on Research Networks in the Mathematical Sciences
数学科学研究网络咨询研讨会
- 批准号:
0929868 - 财政年份:2009
- 资助金额:
$ 7.96万 - 项目类别:
Standard Grant
Graduate Student Summer Workshop in Algebraic Geometry
代数几何研究生暑期研讨会
- 批准号:
0532666 - 财政年份:2005
- 资助金额:
$ 7.96万 - 项目类别:
Standard Grant
EMSW21-VIGRE: Vertical and Horizontal Integration of the Mathematical Sciences at the University of Washington
EMSW21-VIGRE:华盛顿大学数学科学的纵向和横向整合
- 批准号:
0354131 - 财政年份:2004
- 资助金额:
$ 7.96万 - 项目类别:
Continuing Grant
ITR: Tribal Law Enhancement Project
ITR:部落法律加强项目
- 批准号:
0326103 - 财政年份:2003
- 资助金额:
$ 7.96万 - 项目类别:
Standard Grant
A Concentration Year in Dynamical Systems
动力系统的集中年
- 批准号:
0222452 - 财政年份:2002
- 资助金额:
$ 7.96万 - 项目类别:
Standard Grant
Mathematical Sciences: Ergodic Theory of Symbolic Systems
数学科学:符号系统的遍历理论
- 批准号:
9303240 - 财政年份:1993
- 资助金额:
$ 7.96万 - 项目类别:
Continuing Grant
Mathematical Sciences: Ergodic Theory of Symbolic Systems
数学科学:符号系统的遍历理论
- 批准号:
9004253 - 财政年份:1990
- 资助金额:
$ 7.96万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Design theory for estimation and control of nonlinear systems by using symbolic computation for rings of differential operators
微分算子环符号计算非线性系统估计与控制的设计理论
- 批准号:
21K21285 - 财政年份:2021
- 资助金额:
$ 7.96万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Equivalence Relations, Symbolic Dynamics, and Descriptive Set Theory
等价关系、符号动力学和描述集合论
- 批准号:
1201290 - 财政年份:2012
- 资助金额:
$ 7.96万 - 项目类别:
Continuing Grant
Symbolic Methods for Classification Problems In Lie Theory and Differential Geometry
李理论和微分几何中分类问题的符号方法
- 批准号:
0410373 - 财政年份:2004
- 资助金额:
$ 7.96万 - 项目类别:
Standard Grant
New York Group Theory Seminar and Symbolic Computation Workshops
纽约小组理论研讨会和符号计算研讨会
- 批准号:
0330802 - 财政年份:2003
- 资助金额:
$ 7.96万 - 项目类别:
Standard Grant
Further uses of symbolic computation in queueing theory and other areas of applied probability
符号计算在排队论和其他应用概率领域的进一步应用
- 批准号:
238675-2001 - 财政年份:2003
- 资助金额:
$ 7.96万 - 项目类别:
Discovery Grants Program - Individual
RUI: Applications of Symbolic and Algebraic Dynamics to Knot Theory
RUI:符号和代数动力学在纽结理论中的应用
- 批准号:
0304971 - 财政年份:2003
- 资助金额:
$ 7.96万 - 项目类别:
Continuing Grant
Further uses of symbolic computation in queueing theory and other areas of applied probability
符号计算在排队论和其他应用概率领域的进一步应用
- 批准号:
238675-2001 - 财政年份:2002
- 资助金额:
$ 7.96万 - 项目类别:
Discovery Grants Program - Individual
K-theory for C^* algebras aud its applications to symbolic dynamics
C^* 代数的 K 理论及其在符号动力学中的应用
- 批准号:
14540213 - 财政年份:2002
- 资助金额:
$ 7.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Testing a Symbolic Interactionist Theory of Deterrence, Informal Social Control, and Delinquency
检验威慑、非正式社会控制和犯罪的象征性互动理论
- 批准号:
0004323 - 财政年份:2001
- 资助金额:
$ 7.96万 - 项目类别:
Standard Grant
Further uses of symbolic computation in queueing theory and other areas of applied probability
符号计算在排队论和其他应用概率领域的进一步应用
- 批准号:
238675-2001 - 财政年份:2001
- 资助金额:
$ 7.96万 - 项目类别:
Discovery Grants Program - Individual