Mathematical Sciences: Computational Two-Phase Viscous Drop Spreading
数学科学:计算两相粘性液滴扩散
基本信息
- 批准号:9623092
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-07-01 至 2000-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9623092 Braun Motivated by the complex transport associated with spreading process such as the spreading of solder droplets and coating processes, a research program is proposed on the spreading of a droplet that is covered by a film. Often in soldering and other processes involving spreading, the drop may become very thin which indicates the presence of multiple length scales. Based on the author's previous research, the first approach proposed is a multi-scale asymptotic analysis (lubrication theory) to derive nonlinear diffusion equations for the free surfaces; those nonlinear diffusion equations will be solved using a spectrally-accurate implementation of the method of lines. All quantities of interest may be computed in this approximation once the required free surfaces have been found. A second approach is also proposed, via boundary integral equations, under the approximation of Stokes flow in the drop and film. This approach relaxes the requirement that the drop and film be thin, but still requires that the flow be slow. We propose making a direct comparison between the two approaches in order to evaluate the utility of each in various situations. The work proposed will develop models only for the fluid dynamics, and inclusion of reactive effects will be proposed in a subsequent project. Important processes in manufacturing involve the spreading of a fluid droplet in the presence of another fluid; one example is soldering, where, in many instances, the presence of a thin layer of a second fluid, the flux, is required for the process to work at all. Because the use of lead-based solder is no longer allowed, understanding of this droplet spreading process for other kind of solder materials would be very helpful in understanding alternative solder materials. The work proposed in the project is developing some preliminary models necessary for the development of a complete model for a spreading solder drop. The proposed program is to develop theory for the spreading of a droplet on a flat plate that is covered by a thin film of a different fluid. Computer codes will be developed that predict how fast the drop spreads, and the shapes of the drop and the film that covers the drop. In summary, sophisticated mathematical techniques will be applied to a problem of technological importance. The computer codes resulting from this project are expected to be applicable to related wetting problems in different technological areas (e.g. coating processes) subsequent to the completion of this project.
受焊锡液滴扩散和镀膜过程等扩散过程相关的复杂输运的启发,提出了一种研究被薄膜覆盖的液滴扩散的方案。通常在焊接和其他涉及扩散的过程中,液滴可能变得非常薄,这表明存在多个长度尺度。在前人研究的基础上,提出了一种多尺度渐近分析方法(润滑理论)来推导自由表面的非线性扩散方程;这些非线性扩散方程将用谱线法的精确实现来求解。一旦找到所需的自由曲面,所有感兴趣的量都可以用这个近似来计算。第二种方法是利用边界积分方程,在液滴和膜中的斯托克斯流近似下提出的。这种方法放宽了对液滴和薄膜薄的要求,但仍然要求流动缓慢。我们建议在这两种方法之间进行直接比较,以便评估每种方法在各种情况下的效用。拟议的工作将仅为流体动力学建立模型,并将在随后的项目中提议纳入反应效应。制造中的重要过程涉及在存在另一种流体的情况下液滴的扩散;一个例子是焊接,其中,在许多情况下,第二流体,助焊剂的薄层的存在是整个过程工作所必需的。由于不再允许使用铅基焊料,因此了解其他焊料材料的这种液滴扩散过程将对了解替代焊料材料非常有帮助。该项目提出的工作是开发一些必要的初步模型,以开发一个完整的扩展焊点模型。这个计划是为液滴在被不同流体薄膜覆盖的平板上的扩散发展理论。计算机代码将被开发出来,以预测液滴扩散的速度、液滴的形状和覆盖液滴的薄膜。总之,复杂的数学技术将被应用于一个重要的技术问题。本项目产生的计算机代码预计将适用于本项目完成后不同技术领域(如涂层工艺)的相关润湿问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Braun其他文献
Towards a Conceptualization of Corporate Risks in Online Social Networks: A Literature Based Overview of Risks
在线社交网络中企业风险的概念化:基于文献的风险概述
- DOI:
10.1109/edoc.2013.37 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Richard Braun;W. Esswein - 通讯作者:
W. Esswein
Tubulin mRNAs of Trypanosoma brucei.
布氏锥虫的微管蛋白 mRNA。
- DOI:
- 发表时间:
1986 - 期刊:
- 影响因子:5.6
- 作者:
M. Imboden;B. Blum;T. deLange;Richard Braun;Th. Seebeck - 通讯作者:
Th. Seebeck
BPMN4CP Revised -- Extending BPMN for Multi-perspective Modeling of Clinical Pathways
BPMN4CP 修订版——扩展 BPMN 以实现临床路径的多视角建模
- DOI:
10.1109/hicss.2016.407 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Richard Braun;H. Schlieter;Martin Burwitz;W. Esswein - 通讯作者:
W. Esswein
Requirements-based development of BPMN extensions: The case of clinical pathways
基于需求的 BPMN 扩展开发:临床路径案例
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Richard Braun;H. Schlieter - 通讯作者:
H. Schlieter
BPMN4CP: Design and implementation of a BPMN extension for clinical pathways
BPMN4CP:临床路径的 BPMN 扩展的设计和实现
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Richard Braun;H. Schlieter;Martin Burwitz;W. Esswein - 通讯作者:
W. Esswein
Richard Braun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Braun', 18)}}的其他基金
Models for Tear Film Structure, Dynamics and Parameter Identification
泪膜结构、动力学和参数识别模型
- 批准号:
1909846 - 财政年份:2019
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: Tear Film Dynamics: Modeling, Blinking, and Computation
合作研究:泪膜动力学:建模、眨眼和计算
- 批准号:
1412085 - 财政年份:2014
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Modeling the Blink Cycle and Lipid Dynamics in the Tear Film
模拟泪膜中的眨眼周期和脂质动力学
- 批准号:
0616483 - 财政年份:2006
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Scientific Computing Research Environments for the Mathematical Sciences (SCREMS)
数学科学的科学计算研究环境 (SCREMS)
- 批准号:
0322583 - 财政年份:2003
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Life and Physical Sciences interface: Whole animal mathematical and computational modelling of motion
生命与物理科学接口:整个动物运动的数学和计算模型
- 批准号:
BB/X005038/1 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Research Grant
SIAM Interdisciplinary Conferences in the Mathematical and Computational Sciences
SIAM 数学和计算科学跨学科会议
- 批准号:
2244415 - 财政年份:2023
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
The Mathematical and Computational Modelling of Various Problems in the Life Sciences
生命科学中各种问题的数学和计算建模
- 批准号:
RGPIN-2020-05115 - 财政年份:2022
- 资助金额:
$ 6万 - 项目类别:
Discovery Grants Program - Individual
REU Site: Mathematical, Statistical, and Computational Methods in the Life Sciences
REU 网站:生命科学中的数学、统计和计算方法
- 批准号:
2050133 - 财政年份:2021
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
The Mathematical and Computational Modelling of Various Problems in the Life Sciences
生命科学中各种问题的数学和计算建模
- 批准号:
RGPIN-2020-05115 - 财政年份:2021
- 资助金额:
$ 6万 - 项目类别:
Discovery Grants Program - Individual
The Mathematical and Computational Modelling of Various Problems in the Life Sciences
生命科学中各种问题的数学和计算建模
- 批准号:
RGPIN-2020-05115 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Discovery Grants Program - Individual
SIAM Interdisciplinary Conferences in the Mathematical and Computational Sciences
SIAM 数学和计算科学跨学科会议
- 批准号:
1757085 - 财政年份:2018
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
SIAM Conferences in the Mathematical and Computational Sciences
SIAM 数学和计算科学会议
- 批准号:
1460337 - 财政年份:2015
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Scholarships for Tech Valley Scholars in Computational, Mathematical, and Physical Sciences
为科技谷计算、数学和物理科学学者提供的奖学金
- 批准号:
1356379 - 财政年份:2014
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
EXTREEMS-QED: Research and training in computational and data-enabled science and engineering for undergraduates in the mathematical sciences at NJIT
EXTREEMS-QED:为 NJIT 数学科学本科生提供计算和数据支持的科学与工程方面的研究和培训
- 批准号:
1331010 - 财政年份:2013
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant