Distribution of Eigenvalues of the Schrodinger Operator on Compact Manifolds. Matrix Model and Asymptotics of Orthogonal Polynomials
紧流形上薛定谔算子的特征值分布。
基本信息
- 批准号:9623214
- 负责人:
- 金额:$ 6.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-06-01 至 1999-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract Bleher 9623214 The project is devoted to the semiclassical trace formulae for the Schrodinger operator on compact manifolds, limiting probability distributions of quantum energy levels, and related problems in the theory of random matrices. Topics of investigation include: (i) Asymptotics of the oscillatory part in the Weyl spectral formula and periodic geodesics, statistics of eigenvalues of the Schrodinger operator, and mathematical problems of the theory of quantum chaos. (ii) The problem of the uniform semiclassical quantization near unstable invariant manifolds. (iii) Universality of the spacing distribution and double scaling limit in the matrix model. The principal investigator has been working in this area for several years in collaboration with Freeman Dyson and Jean Bourgain (Institute for Advanced Study, Princeton), Joel Lebowitz (Rutgers University), Yakov Sinai (Princeton University), and others. Among his important contributions are the proof of almost periodicity of the Weyl spectral error function for integrable quantum systems, limit theorems for the distribution of eigenvalues, the proof of the Berry saturation conjecture for the eigenvalue statistics, and several other results. In the project the principal investigator is going to study the statistics of energy levels and eigenstates in quantum systems, and the universality of the eigenvalue distribution and double scaling limit in the matrix model. These problems are very important for numerous applications in the theory of quantum chaos, bosonic strings and quantum gravity, mesoscopic systems, and multivariate statistical analysis, and the project is directed to the applications. The tools include the methods of the theory of integrable systems, semiclassical asymptotics, the matrix Riemann-Hilbert problem, and other methods of modern mathematics. The proposed study is heavily based on computer experiments.
摘要Bleher 9623214 该项目致力于研究 紧流形上的薛定谔算子,极限概率 量子能级的分布和相关问题 随机矩阵理论调查的主题包括: (i)Weyl谱中振荡部分的渐近性 公式和周期测地线,统计特征值的薛定谔算子,和数学问题的 量子混沌理论(ii)一致半经典问题 不稳定不变流形附近的量子化(iii)普遍性 矩阵中的间距分布和双标度极限 模型首席研究员一直在这方面工作 与弗里曼·戴森和吉恩· Bourgain(普林斯顿高等研究院),Joel Lebowitz (罗格斯大学),雅科夫西奈(普林斯顿大学),和其他人。他的重要贡献之一是证明了 可积量子系统的Weyl谱误差函数的概周期性,本征值分布的极限定理, 特征值统计和其他一些结果。 在这个项目中,首席研究员将研究 量子系统中能级和本征态的统计,以及本征值分布和双标度的普适性 矩阵模型中的极限。这些问题对于量子混沌理论中的许多应用都是非常重要的, 弦和量子引力,介观系统,和多元 统计分析,该项目是针对应用程序。这些工具包括理论的方法, 可积系统,半经典渐近性,矩阵 Riemann-Hilbert问题,以及其他现代数学方法。 这项研究主要基于计算机实验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pavel Bleher其他文献
Non-Gaussian energy level statistics for some integrable systems.
一些可积系统的非高斯能级统计。
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:8.6
- 作者:
Pavel Bleher;Pavel Bleher;F. Dyson;F. Dyson;J. Lebowitz;J. Lebowitz - 通讯作者:
J. Lebowitz
From the seminar on Mathematical Statistical Physics in Moscow State University, 1962–1994. Hierarchical models and renormalisation group critical phenomena in the Dyson hierarchical model and renormalisation group
- DOI:
10.1140/epjh/e2012-10053-x - 发表时间:
2012-06-07 - 期刊:
- 影响因子:1.200
- 作者:
Pavel Bleher - 通讯作者:
Pavel Bleher
Correlations Between Zeros and Supersymmetry
- DOI:
10.1007/s002200100512 - 发表时间:
2014-01-25 - 期刊:
- 影响因子:2.600
- 作者:
Pavel Bleher;Bernard Shiffman;Steve Zelditch - 通讯作者:
Steve Zelditch
Pavel Bleher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pavel Bleher', 18)}}的其他基金
Random Matrix Models and Statistical Mechanics
随机矩阵模型和统计力学
- 批准号:
1565602 - 财政年份:2016
- 资助金额:
$ 6.14万 - 项目类别:
Continuing Grant
Simons Center for Geometry and Physics Thematic Program for 2016 "Statistical Mechanics and Combinatorics"
西蒙斯几何与物理中心2016年专题项目“统计力学与组合学”
- 批准号:
1603185 - 财政年份:2016
- 资助金额:
$ 6.14万 - 项目类别:
Standard Grant
Random matrix models and their applications
随机矩阵模型及其应用
- 批准号:
1265172 - 财政年份:2013
- 资助金额:
$ 6.14万 - 项目类别:
Continuing Grant
Random matrix models and their applications to statistical mechanics
随机矩阵模型及其在统计力学中的应用
- 批准号:
0969254 - 财政年份:2010
- 资助金额:
$ 6.14万 - 项目类别:
Continuing Grant
CRM 2008-9 Thematic Program: Probabilistic Methods in Mathematical Physics
CRM 2008-9 专题项目:数学物理中的概率方法
- 批准号:
0757926 - 财政年份:2008
- 资助金额:
$ 6.14万 - 项目类别:
Standard Grant
Scaling and universality in random matrix models and statistical physics
随机矩阵模型和统计物理中的标度和普适性
- 批准号:
0652005 - 财政年份:2007
- 资助金额:
$ 6.14万 - 项目类别:
Continuing Grant
Program in Renormalization and Universality in Mathematics and Mathematical Physics
数学和数学物理重整化和普遍性计划
- 批准号:
0514226 - 财政年份:2005
- 资助金额:
$ 6.14万 - 项目类别:
Standard Grant
Scaling and universality in random matrix models, random polynomials and statistical physics
随机矩阵模型、随机多项式和统计物理中的标度和普适性
- 批准号:
0354962 - 财政年份:2004
- 资助金额:
$ 6.14万 - 项目类别:
Continuing Grant
Universality and Scaling in Random Matrix Models, Random Polynomials, and Quantum Mechanics and Statistical Physics
随机矩阵模型、随机多项式、量子力学和统计物理中的普适性和标度
- 批准号:
9970625 - 财政年份:1999
- 资助金额:
$ 6.14万 - 项目类别:
Continuing Grant
相似海外基金
LEAPS-MPS: Investigation on Spectral Geometry of Steklov Eigenvalues
LEAPS-MPS:Steklov 特征值的谱几何研究
- 批准号:
2316620 - 财政年份:2023
- 资助金额:
$ 6.14万 - 项目类别:
Standard Grant
Distribution of Hecke eigenvalues for automorphic representations
自守表示的 Hecke 特征值分布
- 批准号:
RGPIN-2021-03032 - 财政年份:2022
- 资助金额:
$ 6.14万 - 项目类别:
Discovery Grants Program - Individual
Fluctuations of random matrix eigenvalues and disordered systems
随机矩阵特征值的涨落和无序系统
- 批准号:
RGPIN-2022-03118 - 财政年份:2022
- 资助金额:
$ 6.14万 - 项目类别:
Discovery Grants Program - Individual
Analysis on spectral and embedded eigenvalues for non-local Schrodinger operators
非局部薛定谔算子的谱和嵌入特征值分析
- 批准号:
21KK0245 - 财政年份:2022
- 资助金额:
$ 6.14万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Fluctuations of random matrix eigenvalues and disordered systems
随机矩阵特征值的涨落和无序系统
- 批准号:
DGECR-2022-00435 - 财政年份:2022
- 资助金额:
$ 6.14万 - 项目类别:
Discovery Launch Supplement
Far apart: outliers, extremal eigenvalues, and spectral gaps in random graphs and random matrices
相距较远:随机图和随机矩阵中的异常值、极值特征值和谱间隙
- 批准号:
2154099 - 财政年份:2022
- 资助金额:
$ 6.14万 - 项目类别:
Standard Grant
Gaps between Robin and Neumann eigenvalues
Robin 和 Neumann 特征值之间的差距
- 批准号:
562327-2021 - 财政年份:2021
- 资助金额:
$ 6.14万 - 项目类别:
University Undergraduate Student Research Awards
Eigenvalues of Stochastic Matrices with Prescribed Stationary Distribution
具有规定平稳分布的随机矩阵的特征值
- 批准号:
564391-2021 - 财政年份:2021
- 资助金额:
$ 6.14万 - 项目类别:
University Undergraduate Student Research Awards
Distribution of Hecke eigenvalues for automorphic representations
自守表示的 Hecke 特征值分布
- 批准号:
DGECR-2021-00121 - 财政年份:2021
- 资助金额:
$ 6.14万 - 项目类别:
Discovery Launch Supplement
Distribution of Hecke eigenvalues for automorphic representations
自守表示的 Hecke 特征值分布
- 批准号:
RGPIN-2021-03032 - 财政年份:2021
- 资助金额:
$ 6.14万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




