Mathematical Sciences: Topics in Applied Asymptotic Analysis
数学科学:应用渐近分析主题
基本信息
- 批准号:9625341
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-08-01 至 2000-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9625341 Wimp This proposed program consists of several topics in applied asymptotic analysis. These topics by and large have not been systematically covered in the general books dealing with asymptotics, yet are of great significance in applied science and engineering. For instance, the central limit theorem is one of the keystones of probability theory, yet no readily available source on asymptotics has discussed its applications and ramifications. Certain problems in combinatorics, in particular, the theory of random walks, can be elucidated by asymptotic methods; yet these have received no unified treatment. Most books have an extensive treatment of differential equations, but difference equations, which are just as important, require their own methods of attack. Renewal equations, which arise in investigations in computer science and engineering, have been occasionally treated but have not yet received the attention they deserve. The topics to be investigated are motivated by these deficiencies: the drunkard's walk and convolution sequences; the stability and convergence of the solutions of non-linear difference equations; the application of probabilistic methods to problems in applied asymptotic analysis; error distribution in the numerical inversion of matrices; and renewal equations arising in the recovery of information in communications systems employing multiaccess channels. %%% Scientists are often interested in what happens "in the large." Examples of this abound in everyday life. For instance, if the number of users of the internet continues to grow in some well-defined fashion, what precisely will happen to the time required to log onto the system? What is the likelihood that a medication ingested into the human system will reach its target after an extended period of time? How are the populations of a given agricultural pest and the plants on which it feeds related over an extended period of time? Is the future growth in major criminal offenses in a city strongly dependent on the current rate of minor criminal offenses? Will the population of a country, given sufficient food supply, continue to grow at a disastrous rate, or are there self-limiting features of population growth that will prevent this from happening? The scientific mathematical language often used to model such situations is called the theory of difference equations. In this research program, we intend to develop new methods for attacking such equations, and hence to help resolve some practical issues which these equations describe. ***
小行星9625341 这个建议的计划包括几个主题在应用渐近分析。这些主题基本上没有系统地涵盖在一般书籍处理渐近,但在应用科学和工程具有重要意义。 例如,中心极限定理是概率论的基石之一,但没有现成的来源渐近讨论其应用和分支。 组合学中的某些问题,特别是随机游动理论,可以用渐近方法来阐明,但这些问题还没有得到统一的处理。 大多数书对微分方程有广泛的论述,但同样重要的差分方程需要自己的求解方法。 更新方程,在计算机科学和工程的调查中出现,偶尔被处理,但尚未得到应有的重视。 研究的主题是由这些不足引起的:酒鬼的行走和卷积序列;非线性差分方程解的稳定性和收敛性;概率方法在应用渐近分析问题中的应用;矩阵数值逆的误差分布;以及在采用多址信道的通信系统中恢复信息时产生的更新方程。 %%% 科学家们通常对“总体上”发生的事情感兴趣。“这方面的例子在日常生活中比比皆是。 例如,如果互联网用户的数量继续以某种明确的方式增长,那么登录系统所需的时间会发生什么变化? 摄入人体系统的药物经过一段时间后到达目标的可能性有多大? 在一段较长的时间内,某一农业害虫的种群与其赖以为生的植物之间有何关系? 一个城市未来重大刑事犯罪的增长是否强烈依赖于当前轻微刑事犯罪的增长率? 一个国家的人口,在有足够的食物供应的情况下,是否会继续以灾难性的速度增长,或者是否存在人口增长的自我限制特征,以防止这种情况发生? 通常用于模拟这种情况的科学数学语言被称为差分方程理论。 在这项研究计划中,我们打算开发新的方法来攻击这样的方程,从而帮助解决这些方程描述的一些实际问题。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jet Wimp其他文献
Expansion formulas for generalized hypergeometric functions
- DOI:
10.1007/bf02843879 - 发表时间:
1962-09-01 - 期刊:
- 影响因子:0.900
- 作者:
Jet Wimp;Yudell L. Luke - 通讯作者:
Yudell L. Luke
An algorithm for generating sequences defined by nonhomogeneous difference equations
- DOI:
10.1007/bf02849488 - 发表时间:
1969-09-01 - 期刊:
- 影响因子:0.900
- 作者:
Jet Wimp;Yudell L. Luke - 通讯作者:
Yudell L. Luke
Connection coefficients, orthogonal polynomials and the WZ-algorithms
- DOI:
10.1023/a:1019117731699 - 发表时间:
1999-09-01 - 期刊:
- 影响因子:2.000
- 作者:
Jet Wimp - 通讯作者:
Jet Wimp
A note on Koornwinder's polynomials with weight function (1−x)α(1+x)β+Mδ(x+1)+Nδ(x−1)
- DOI:
10.1007/bf02142499 - 发表时间:
1996-12-01 - 期刊:
- 影响因子:2.000
- 作者:
Harry Kiesel;Jet Wimp - 通讯作者:
Jet Wimp
Jet Wimp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jet Wimp', 18)}}的其他基金
Mathematical Sciences: Asymptotic Methods in Combinatorics
数学科学:组合学中的渐近方法
- 批准号:
8901610 - 财政年份:1989
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Aspects of Formal Laurent Series and Applications To Some Problems in Applied Analysis
数学科学:形式洛朗级数的各个方面及其在应用分析中某些问题的应用
- 批准号:
8802381 - 财政年份:1988
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Multidimensional Iteration Algorithms >
数学科学:多维迭代算法 >
- 批准号:
8419086 - 财政年份:1985
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Miller Algorithms For Infinite Systems
数学科学:无限系统的米勒算法
- 批准号:
8301842 - 财政年份:1983
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences aiming at medical application of light propagation in biomedical tissues and related topics
针对生物医学组织中光传播的医学应用的数学科学及相关主题
- 批准号:
16H02155 - 财政年份:2016
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
CBMS Regional Conference in the Mathematical Sciences - "Finite Morse Index Solutions and Related Topics" -Winter 2007
CBMS 数学科学区域会议 - “有限莫尔斯指数解决方案和相关主题” - 2007 年冬季
- 批准号:
0628079 - 财政年份:2007
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences -Generalized Linear Mixed Models and Related Topics - June 8-12,1999
NSF/CBMS 数学科学区域会议 - 广义线性混合模型及相关主题 - 1999 年 6 月 8 日至 12 日
- 批准号:
9813374 - 财政年份:1999
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Mathematical Sciences: Symbolic Dynamics and Related Topics
数学科学:符号动力学及相关主题
- 批准号:
9706852 - 财政年份:1997
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Fluid Dynamics
数学科学:流体动力学主题
- 批准号:
9622735 - 财政年份:1996
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Nonparametric Analysis and Model Building
数学科学:非参数分析和模型构建主题
- 批准号:
9625777 - 财政年份:1996
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Model Theory
数学科学:模型论主题
- 批准号:
9696268 - 财政年份:1996
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Mathematical Topics in Combustion
数学科学:燃烧中的数学主题
- 批准号:
9600103 - 财政年份:1996
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Diffusion Processes and Related Topics
数学科学:扩散过程及相关主题
- 批准号:
9625782 - 财政年份:1996
- 资助金额:
$ 6万 - 项目类别:
Continuing grant
Mathematical Sciences: Topics in Commutative Algebra
数学科学:交换代数主题
- 批准号:
9622224 - 财政年份:1996
- 资助金额:
$ 6万 - 项目类别:
Standard Grant