Operator Algebras and Representations
算子代数和表示
基本信息
- 批准号:9700130
- 负责人:
- 金额:$ 9.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-06-01 至 2001-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract Jorgensen Spectpal pairs were studied first by Palle E.T. Jorgensen and Steen Pedersen in connection with their work on the Fuglede conjecture, but they turned out later to also have connections to wavelet theory, fractal iterations, Julia sets, and quasi-crystals. The harmonic analysis which is needed will be project 1 of the proposal, and it is based on analysis of certain representations of the Cuntz algebras, and on endomorphisms of von Neumann algebras. This representation theory is further expected to be useful in connection with the study of concrete geometric tiling questions. But the representations needed are type III (generically), while some of the methods from earlier work are type I. Nonetheless they have already proved amenable for adaptation to the infinite case. Jorgensen also plans to collaborate with his colleague Florin Radulescu on dynamical systems of endomorphisms which arise in Berezin quantization. The index theory which is available for the time-independent systems is likely to help us understand the time-dependent case which is the result of the operator algebraic approach to Berezin quantization. The proposal is in the interface of basic mathematics with its technology applications. The latter refer to mathematical tools from harmonic analysis and wavelet theory which are applied in current data-compression algorithms. These application spin-offs include "fingerprint electronic storage" and high-resolution television; but the proposal is on the theoretical side of the equation. There are two basic operations from mathematics (translation and scaling) which go into the filters that govern algorithms, and the repetition in the recursive process refers to the preservation of the same minimal data from one step to the next. Hence the term "filter bank". Surprisingly, and noted by the proposer in recent research papers, these filter-constructions may be understood as representations of the kinds of algebras which form the basis for the proposed researc h.
摘要 Jorgensen Spectpal 对首先由 Palle E.T. 研究。 Jorgensen 和 Steen Pedersen 与他们关于 Fuglede 猜想的工作有关,但后来证明他们也与小波理论、分形迭代、Julia 集和准晶体有关。所需的调和分析将是该提案的项目 1,它基于对 Cuntz 代数的某些表示以及冯诺依曼代数的自同态的分析。这种表示理论有望在具体几何平铺问题的研究中发挥作用。但所需的表示形式是 III 型(一般而言),而早期工作中的一些方法是 I 型。尽管如此,它们已经被证明适合适应无限情况。 Jorgensen 还计划与他的同事 Florin Radulescu 合作研究别雷津量子化中出现的自同态动力系统。适用于时间无关系统的指数理论可能会帮助我们理解时间相关的情况,这是 Berezin 量化的算子代数方法的结果。 该提案涉及基础数学与其技术应用的接口。 后者指的是当前数据压缩算法中应用的调和分析和小波理论的数学工具。 这些应用副产品包括“指纹电子存储”和高分辨率电视;但该提议是在等式的理论方面。 数学中有两个基本操作(平移和缩放)进入控制算法的过滤器,递归过程中的重复是指从一步到下一步保存相同的最小数据。 因此术语“滤波器组”。令人惊讶的是,提议者在最近的研究论文中指出,这些过滤器结构可以被理解为构成所提议研究基础的代数类型的表示。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Palle Jorgensen其他文献
Transfer operators and conditional expectations: the non-commutative case, the case of mu-Brownian motions and white noise space setting
传递算子和条件期望:非交换情况、mu-布朗运动情况和白噪声空间设置
- DOI:
10.1007/s43037-023-00313-x - 发表时间:
2023 - 期刊:
- 影响因子:1.2
- 作者:
Daniel Alpay;Palle Jorgensen - 通讯作者:
Palle Jorgensen
Hermite-Wavelet Transforms of Multivariate Functions on $[0,1]^{d}$
- DOI:
10.1007/s10440-020-00358-2 - 发表时间:
2020-09-16 - 期刊:
- 影响因子:1.000
- 作者:
Zhihua Zhang;Palle Jorgensen - 通讯作者:
Palle Jorgensen
Monic representations of finite higher-rank graphs
有限高阶图的模态表示
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Carla Farsi;E. Gillaspy;Palle Jorgensen;Sooran Kang;Judith Packer - 通讯作者:
Judith Packer
Purely Atomic Representations of Higher-Rank Graph $$\varvec{C}^{\varvec{*}}$$ -Algebras
- DOI:
10.1007/s00020-018-2493-z - 发表时间:
2018-09-29 - 期刊:
- 影响因子:0.900
- 作者:
Carla Farsi;Elizabeth Gillaspy;Palle Jorgensen;Sooran Kang;Judith Packer - 通讯作者:
Judith Packer
Remembrances of Derek William Robinson, June 25, 1935–August 31, 2021
纪念德里克·威廉·罗宾逊,1935年6月25日至2021年8月31日
- DOI:
10.1090/noti2765 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
M. Barnsley;B. Nachtergaele;Barry Simon;A. Connes;David Evans;G. Gallavotti;S. Glashow;A. Jaffe;Palle Jorgensen;A. Kishimoto;E. Lieb;H. Narnhofer;D. Ruelle;M. Ruskai;Adam S. Sikora;A. ter Elst - 通讯作者:
A. ter Elst
Palle Jorgensen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Palle Jorgensen', 18)}}的其他基金
Collaborative Research: Midwest Geometry Conference 2005-2007
合作研究:中西部几何会议 2005-2007
- 批准号:
0509068 - 财政年份:2005
- 资助金额:
$ 9.6万 - 项目类别:
Standard Grant
Collaborative Research: Operator Algebras and Applications
合作研究:算子代数及其应用
- 批准号:
0457581 - 财政年份:2005
- 资助金额:
$ 9.6万 - 项目类别:
Continuing Grant
Collaborative Research: Conference Support: Operator Theory/Operator Algebras, GPOTS 05-06; University of Central Florida, June 2005; University of Iowa, May 2006
协作研究:会议支持:算子理论/算子代数,GPOTS 05-06;
- 批准号:
0503990 - 财政年份:2005
- 资助金额:
$ 9.6万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Focused Research on Wavelets, Frames, and Operator Theory
FRG:协作研究:小波、框架和算子理论的重点研究
- 批准号:
0139473 - 财政年份:2002
- 资助金额:
$ 9.6万 - 项目类别:
Continuing Grant
Operator Algebras, Representations, and Wavelets
算子代数、表示和小波
- 批准号:
9987777 - 财政年份:2000
- 资助金额:
$ 9.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Operator Algebras
数学科学:算子代数
- 批准号:
9401252 - 财政年份:1994
- 资助金额:
$ 9.6万 - 项目类别:
Continuing Grant
Mathematical Sciences: Conference in Operator Algebras and Mathematical Physics; Iowa City, Iowa; June 17-24, 1985
数学科学:算子代数和数学物理会议;
- 批准号:
8500879 - 财政年份:1985
- 资助金额:
$ 9.6万 - 项目类别:
Standard Grant
Functional Analysis and Operator Theory
泛函分析与算子理论
- 批准号:
7802942 - 财政年份:1978
- 资助金额:
$ 9.6万 - 项目类别:
Standard Grant
相似海外基金
Geometric Representations of the Elliptic Quantum Toroidal Algebras
椭圆量子环形代数的几何表示
- 批准号:
23K03029 - 财政年份:2023
- 资助金额:
$ 9.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
- 批准号:
23K03064 - 财政年份:2023
- 资助金额:
$ 9.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Sheaf Representations of Algebras and Logic of Sheaves
代数的层表示和层逻辑
- 批准号:
22K13950 - 财政年份:2022
- 资助金额:
$ 9.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Reserch on representations of association schemes and generalized Terwilliger algebras
关联格式表示和广义特威利格代数研究
- 批准号:
22K03266 - 财政年份:2022
- 资助金额:
$ 9.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Lie algebras and superalgebras: representations and structure theory
李代数和超代数:表示和结构理论
- 批准号:
RGPIN-2018-06417 - 财政年份:2022
- 资助金额:
$ 9.6万 - 项目类别:
Discovery Grants Program - Individual
Simple smooth representations of Lie algebras
李代数的简单平滑表示
- 批准号:
RGPIN-2020-04774 - 财政年份:2022
- 资助金额:
$ 9.6万 - 项目类别:
Discovery Grants Program - Individual
Representations of p-adic groups and dg-algebras
p-adic 群和 dg-代数的表示
- 批准号:
2602995 - 财政年份:2021
- 资助金额:
$ 9.6万 - 项目类别:
Studentship
Affine cluster algebras as dynamical systems, surface triangulations, quiver representations and friezes
仿射簇代数作为动力系统、表面三角测量、箭袋表示和饰带
- 批准号:
21F20788 - 财政年份:2021
- 资助金额:
$ 9.6万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Lie algebras and superalgebras: representations and structure theory
李代数和超代数:表示和结构理论
- 批准号:
RGPIN-2018-06417 - 财政年份:2021
- 资助金额:
$ 9.6万 - 项目类别:
Discovery Grants Program - Individual
Representations of Iwahori-Hecke algebras
Iwahori-Hecke 代数的表示
- 批准号:
2609492 - 财政年份:2021
- 资助金额:
$ 9.6万 - 项目类别:
Studentship