Operator Algebras, Representations, and Wavelets
算子代数、表示和小波
基本信息
- 批准号:9987777
- 负责人:
- 金额:$ 11.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-06-15 至 2004-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTDMS-9987777OPERATOR ALGEBRAS, REPRESENTATIONS AND WAVELETSPALLE E.T. JORGENSENJorgensen's proposal research will involve several areas of mathematics and will be focussed on applications, spectral and tiling duality, and fractal iteration processes. The basic methods derive from operator algebras and representation theory, and the connection to the applications is threefold: wavelet theory, operators, and relations between operations in the discrete and continuos domains. Wavelet theory concerns the mathematical tools involved in digitizing continuous data with view to storage, and the synthesis process, recreating the desired picture (or time signal) from the stored data. The algorithms involved go under the name of filter banks, and their spectacular efficiency derives in part from the use of (hidden) self-similarity in the data which is analyzed. Observations or time signals are functions, and classes of functions make up spaces. Numerical correlations add structure to the spaces at hand, Hilbert spaces. There are operators in the spaces deriving from the discrete data and others from the spaces of continuous signals. The first ones are good for computations, while the second reflect the real world. The operators between the two are the focus of Jorgensen's research.Relations between operations in the discrete and continuous domains are studied as symbols, because symbols are programmable. The mathematics involved in assigning operators to the symbolic relations is called representation theory. The combination of the three areas opens up exciting new opportunities at the interface of mathematics and engineering. A main point in the proposal is the study of intertwining operators between, on one side, the "discrete world" of high-pass/low-pass filters of signal processing , and on the other side, the "continuous world" of wavelets. There are significant operator-algebraic and representation-theoretic issues on both sides of the "divide", and the intertwining operators throw light on central issues for wavelets in higher dimensions. The proposal describes how the tool from diverse areas of analysis, as well as from dynamical systems and operator algebra, merge into the proposed project on wavelet analysis. The diversity of techniques is also a charm of the subject, which continues to generate new graduate student activity. Jorgensen had several recent students complete theses in the subject.
算子代数、表示和小波空间JORGENSENJorgensen的提案研究将涉及数学的几个领域,并将集中在应用程序,光谱和平铺对偶,分形迭代过程。 基本方法来自算子代数和表示论,与应用的联系是三方面的:小波理论,算子,以及离散和连续域中操作之间的关系。 小波理论涉及的数学工具,涉及到数字化连续数据的存储,以及合成过程,从存储的数据中重新创建所需的图像(或时间信号)。 所涉及的算法被称为过滤器组,其惊人的效率部分源于分析数据中(隐藏的)自相似性的使用。 观测或时间信号是函数,函数类构成空间。 数值相关性为手头的空间(希尔伯特空间)增加了结构。 在空间中有从离散数据导出的算子和从连续信号的空间导出的算子。 第一种方法适合于计算,而第二种方法反映了真实的世界。 两者之间的运算符是Jorgensen研究的重点,因为符号是可编程的,所以离散域和连续域中运算之间的关系被当作符号来研究。 将运算符分配给符号关系所涉及的数学称为表示论。 这三个领域的结合开辟了令人兴奋的数学和工程接口的新机会。 该提案的一个要点是研究交织算子之间的交织,一方面,高通/低通滤波器的信号处理的“离散世界”,另一方面,小波的“连续世界”。 有显着的运营商代数和代表性理论的问题,双方的“鸿沟”,交织运营商抛出光的中心问题,小波在更高的维度。 该提案描述了如何从不同的分析领域的工具,以及从动力系统和算子代数,合并到小波分析的拟议项目。 技术的多样性也是该学科的魅力,它继续产生新的研究生活动。 约根森最近有几个学生完成了这一主题的论文。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Palle Jorgensen其他文献
Transfer operators and conditional expectations: the non-commutative case, the case of mu-Brownian motions and white noise space setting
传递算子和条件期望:非交换情况、mu-布朗运动情况和白噪声空间设置
- DOI:
10.1007/s43037-023-00313-x - 发表时间:
2023 - 期刊:
- 影响因子:1.2
- 作者:
Daniel Alpay;Palle Jorgensen - 通讯作者:
Palle Jorgensen
Hermite-Wavelet Transforms of Multivariate Functions on $[0,1]^{d}$
- DOI:
10.1007/s10440-020-00358-2 - 发表时间:
2020-09-16 - 期刊:
- 影响因子:1.000
- 作者:
Zhihua Zhang;Palle Jorgensen - 通讯作者:
Palle Jorgensen
Monic representations of finite higher-rank graphs
有限高阶图的模态表示
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Carla Farsi;E. Gillaspy;Palle Jorgensen;Sooran Kang;Judith Packer - 通讯作者:
Judith Packer
Purely Atomic Representations of Higher-Rank Graph $$\varvec{C}^{\varvec{*}}$$ -Algebras
- DOI:
10.1007/s00020-018-2493-z - 发表时间:
2018-09-29 - 期刊:
- 影响因子:0.900
- 作者:
Carla Farsi;Elizabeth Gillaspy;Palle Jorgensen;Sooran Kang;Judith Packer - 通讯作者:
Judith Packer
Remembrances of Derek William Robinson, June 25, 1935–August 31, 2021
纪念德里克·威廉·罗宾逊,1935年6月25日至2021年8月31日
- DOI:
10.1090/noti2765 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
M. Barnsley;B. Nachtergaele;Barry Simon;A. Connes;David Evans;G. Gallavotti;S. Glashow;A. Jaffe;Palle Jorgensen;A. Kishimoto;E. Lieb;H. Narnhofer;D. Ruelle;M. Ruskai;Adam S. Sikora;A. ter Elst - 通讯作者:
A. ter Elst
Palle Jorgensen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Palle Jorgensen', 18)}}的其他基金
Collaborative Research: Midwest Geometry Conference 2005-2007
合作研究:中西部几何会议 2005-2007
- 批准号:
0509068 - 财政年份:2005
- 资助金额:
$ 11.1万 - 项目类别:
Standard Grant
Collaborative Research: Operator Algebras and Applications
合作研究:算子代数及其应用
- 批准号:
0457581 - 财政年份:2005
- 资助金额:
$ 11.1万 - 项目类别:
Continuing Grant
Collaborative Research: Conference Support: Operator Theory/Operator Algebras, GPOTS 05-06; University of Central Florida, June 2005; University of Iowa, May 2006
协作研究:会议支持:算子理论/算子代数,GPOTS 05-06;
- 批准号:
0503990 - 财政年份:2005
- 资助金额:
$ 11.1万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Focused Research on Wavelets, Frames, and Operator Theory
FRG:协作研究:小波、框架和算子理论的重点研究
- 批准号:
0139473 - 财政年份:2002
- 资助金额:
$ 11.1万 - 项目类别:
Continuing Grant
Mathematical Sciences: Operator Algebras
数学科学:算子代数
- 批准号:
9401252 - 财政年份:1994
- 资助金额:
$ 11.1万 - 项目类别:
Continuing Grant
Mathematical Sciences: Conference in Operator Algebras and Mathematical Physics; Iowa City, Iowa; June 17-24, 1985
数学科学:算子代数和数学物理会议;
- 批准号:
8500879 - 财政年份:1985
- 资助金额:
$ 11.1万 - 项目类别:
Standard Grant
Functional Analysis and Operator Theory
泛函分析与算子理论
- 批准号:
7802942 - 财政年份:1978
- 资助金额:
$ 11.1万 - 项目类别:
Standard Grant
相似海外基金
Geometric Representations of the Elliptic Quantum Toroidal Algebras
椭圆量子环形代数的几何表示
- 批准号:
23K03029 - 财政年份:2023
- 资助金额:
$ 11.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
- 批准号:
23K03064 - 财政年份:2023
- 资助金额:
$ 11.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Sheaf Representations of Algebras and Logic of Sheaves
代数的层表示和层逻辑
- 批准号:
22K13950 - 财政年份:2022
- 资助金额:
$ 11.1万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Reserch on representations of association schemes and generalized Terwilliger algebras
关联格式表示和广义特威利格代数研究
- 批准号:
22K03266 - 财政年份:2022
- 资助金额:
$ 11.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Lie algebras and superalgebras: representations and structure theory
李代数和超代数:表示和结构理论
- 批准号:
RGPIN-2018-06417 - 财政年份:2022
- 资助金额:
$ 11.1万 - 项目类别:
Discovery Grants Program - Individual
Simple smooth representations of Lie algebras
李代数的简单平滑表示
- 批准号:
RGPIN-2020-04774 - 财政年份:2022
- 资助金额:
$ 11.1万 - 项目类别:
Discovery Grants Program - Individual
Representations of p-adic groups and dg-algebras
p-adic 群和 dg-代数的表示
- 批准号:
2602995 - 财政年份:2021
- 资助金额:
$ 11.1万 - 项目类别:
Studentship
Affine cluster algebras as dynamical systems, surface triangulations, quiver representations and friezes
仿射簇代数作为动力系统、表面三角测量、箭袋表示和饰带
- 批准号:
21F20788 - 财政年份:2021
- 资助金额:
$ 11.1万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Lie algebras and superalgebras: representations and structure theory
李代数和超代数:表示和结构理论
- 批准号:
RGPIN-2018-06417 - 财政年份:2021
- 资助金额:
$ 11.1万 - 项目类别:
Discovery Grants Program - Individual
Representations of Iwahori-Hecke algebras
Iwahori-Hecke 代数的表示
- 批准号:
2609492 - 财政年份:2021
- 资助金额:
$ 11.1万 - 项目类别:
Studentship