Pattern Formation in Semi-Discrete Excitable Media

半离散可激励介质中的图案形成

基本信息

  • 批准号:
    9703630
  • 负责人:
  • 金额:
    $ 6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-08-15 至 2000-07-31
  • 项目状态:
    已结题

项目摘要

Hastings 9703630 Semi-discrete models of excitable media consist of coupled systems of ordinary differential equations, with each unit describing the electrical kinetics in a single "cell". They are intermediate between continuous (pde) models and purely discrete models, or cellular automata. The investigator studies whether principles developed for cellular automata models apply to the more realistic semi-discrete case. He considers specific models developed from experimental data to give quantitative descriptions of neural behavior. A model of special interest is that of Morris and Lecar, describing voltage oscillations in barnacle muscle fiber. This model has different features from the well-known FitzHugh-Nagumo system, features that are found in a number of experimental settings and that, moreover, appear amenable to mathematical analysis. The investigator explores the role of various parameters in the system in the propagation of spatial patterns. Among the factors to be considered are excitation threshold, coupling strength, relative rates of fast and slow processes, spatial geometry of the medium, and the relative time spent in the excited and refractory states. The goal of this project is to develop an understanding of pattern formation in semi-discrete excitable media. The main intended application is to neurobiology, though excitable media are found in many biological and chemical systems. Isolated cells are called ``excitable'' if they exhibit a threshold phenomenon in response to a brief external stimulus, but cannot support continued oscillations on their own. A semi-discrete model describes collections of excitable neurons coupled by a linear or nonlinear diffusion mechanism. Examples include nerve, cardiac, and muscle tissue, supporting phenomena such as wave propagation down a myelinated axon, waves of electrical stimulation that sweep through heart muscles, and spreading cortical depression, a brain wave phenomenon.
黑斯廷斯9703630 可激发介质的半离散模型由常微分方程的耦合系统组成,每个单元描述单个“细胞”中的电动力学。 它们介于连续(pde)模型和纯离散模型或细胞自动机之间。 研究人员研究是否原则开发的元胞自动机模型适用于更现实的半离散的情况下。 他考虑了从实验数据中开发的特定模型,以定量描述神经行为。 一个特别有趣的模型是Morris和Lecar的模型,描述了藤壶肌肉纤维中的电压振荡。 这个模型有不同的功能,从著名的FitzHugh-Nagumo系统,功能,发现在一些实验设置,而且,似乎经得起数学分析。 研究人员探讨了空间模式传播中系统中各种参数的作用。 要考虑的因素包括激发阈值、耦合强度、快过程和慢过程的相对速率、介质的空间几何形状以及在激发态和不应态中花费的相对时间。 这个项目的目标是在半离散可激发介质中发展图案形成的理解。 主要的预期应用是神经生物学,虽然可兴奋介质在许多生物和化学系统中发现。 如果孤立的细胞对短暂的外部刺激表现出阈值现象,但不能自己支持持续的振荡,那么它们被称为“可兴奋的”。 半离散模型描述了由线性或非线性扩散机制耦合的可兴奋神经元的集合。 例子包括神经,心脏和肌肉组织,支持现象,如波传播下有髓鞘的轴突,电刺激波扫过心脏肌肉,和扩散皮层抑制,脑波现象。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stuart Hastings其他文献

Survey of adult extracorporeal membrane oxygenation (ECMO) practice and attitudes among Australian and New Zealand intensivists.
澳大利亚和新西兰重症监护医师对成人体外膜肺氧合 (ECMO) 实践和态度的调查。
Persistent spatial patterns for semi-discrete models of excitable media
  • DOI:
    10.1007/bf00275828
  • 发表时间:
    1981-01-01
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Stuart Hastings
  • 通讯作者:
    Stuart Hastings

Stuart Hastings的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stuart Hastings', 18)}}的其他基金

Conference on Waves and Continuation Methods in Biology and Related Areas
生物学及相关领域的波和延拓方法会议
  • 批准号:
    9801227
  • 财政年份:
    1998
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Research in Differential Equations
数学科学:微分方程研究
  • 批准号:
    9302737
  • 财政年份:
    1993
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Conference: Similarity Solutions of Differential Equations; to be held April 26-28, 1991 in Pittsburg, Pennsylvania
数学科学:会议:微分方程的相似解;
  • 批准号:
    9019892
  • 财政年份:
    1991
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Some Nonlinear Problems In Differential and Integral Equations
数学科学:微分方程和积分方程中的一些非线性问题
  • 批准号:
    9101472
  • 财政年份:
    1991
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences Research Equipment
数学科学研究设备
  • 批准号:
    8805492
  • 财政年份:
    1988
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Differential Equations
数学科学:微分方程
  • 批准号:
    8701356
  • 财政年份:
    1987
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Equations from Boundary Layer Theory
数学科学:边界层理论方程
  • 批准号:
    8501788
  • 财政年份:
    1985
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Some Nonlinear Differential Equations of Applied Mathematics
应用数学的一些非线性微分方程
  • 批准号:
    8101891
  • 财政年份:
    1981
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Nonlinear Partial Differential Equations
非线性偏微分方程
  • 批准号:
    8018531
  • 财政年份:
    1980
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Problems in Reaction and Diffusion
反应和扩散问题
  • 批准号:
    7902562
  • 财政年份:
    1979
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant

相似国自然基金

The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Study on formation mechanisms of various structures produced by polymorphic semi-crystalline polymer
多晶型半晶聚合物各种结构的形成机理研究
  • 批准号:
    20K05632
  • 财政年份:
    2020
  • 资助金额:
    $ 6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Gas absorption mechanisms and aggregation behavior during semi-clathrate hydrate slurries formation in a fluidized gas separation process
流化气体分离过程中半笼形水合物浆料形成过程中的气体吸收机制和聚集行为
  • 批准号:
    20K15073
  • 财政年份:
    2020
  • 资助金额:
    $ 6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Assigning spectra to galaxies in semi-analytical models of galaxy formation
在星系形成的半解析模型中为星系分配光谱
  • 批准号:
    2114379
  • 财政年份:
    2018
  • 资助金额:
    $ 6万
  • 项目类别:
    Studentship
Development of Next-Generation Semi-structured Data Mining for Large-Scale Knowledge Base Formation
用于大规模知识库形成的下一代半结构化数据挖掘的开发
  • 批准号:
    24240021
  • 财政年份:
    2012
  • 资助金额:
    $ 6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Mechanism of grain structure formation and microdomain structures in semi-dilute solutions of block copolymers
嵌段共聚物半稀溶液中晶粒结构形成机制和微区结构
  • 批准号:
    24550250
  • 财政年份:
    2012
  • 资助金额:
    $ 6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of molecular mechanisms of the formation of the intercellular junction-underlying actin bundle using semi-intact epithelium.
使用半完整上皮分析细胞间连接下方肌动蛋白束形成的分子机制。
  • 批准号:
    21770212
  • 财政年份:
    2009
  • 资助金额:
    $ 6万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Universality of Microphase-Separation in Semi-Dilute Solutions and Mechanism of Structure Formation
半稀溶液中微相分离的普遍性及结构形成机制
  • 批准号:
    21550208
  • 财政年份:
    2009
  • 资助金额:
    $ 6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Next-Generation Semi-structured Data Mining for Large-Scale Knowledge Base Formation
用于大规模知识库形成的下一代半结构化数据挖掘
  • 批准号:
    20240014
  • 财政年份:
    2008
  • 资助金额:
    $ 6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Modeling the Formation of Highly Aligned Texture on the Inner Surface of Semi-Permeable Axonal Guidance Hollow Fiber Membranes
模拟半渗透轴突引导中空纤维膜内表面高度对齐纹理的形成
  • 批准号:
    0600551
  • 财政年份:
    2006
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Simulation of red tide formation in semi-enclosed coastal sea and its application for prevention
半封闭近海赤潮形成模拟及其防治应用
  • 批准号:
    14350526
  • 财政年份:
    2002
  • 资助金额:
    $ 6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了