Scaling Limits for Stochastic and Quantum Dynamics

随机和量子动力学的标度极限

基本信息

  • 批准号:
    9703752
  • 负责人:
  • 金额:
    $ 28.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-09-01 至 2001-08-31
  • 项目状态:
    已结题

项目摘要

9703752 Yau The incompressible Navier-Stokes equation have been proved as the hydrodynamical limit equation of stochastic lattice gas models in dimension 3. The first project investigates the following three related topics: (i) the scaling limit of tagged particles, (ii) the equilibrium fluctuation and (iii) the appropriate time scale for dimensions 1 and 2. The first problem emphasizes the individual behavior of a typical particle instead of the collective behavior of all the particles. The second problem is a question about the central limit theorem. The third problem addresses the time scale in dimensions 1 and 2, which is conjectured to be very different from the diffusive scale in dimension 3. The second project studies the relaxation rates of the Kawasaki dynamics of Gibbs states in infinite volume. This is believed to be a power law. The method is based on the Poincare inequalities (spectral gap), logarithmic Sobolev inequalities and some entropy estimates. The third project concerns the scaling limit of a quantum particle in a random potential. There are two limiting cases: the low density limit and the weak coupling limit. In both cases, the phase space density of the quantum evolution defined through the Wigner transform or the coherent state is expected to converge weakly to a linear Boltzmann equation with collision kernel given by the quantum scattering cross section. This research addresses in particular the following two questions: (1) What is the typical behavior of an individual particle in a fluid? Though the collective behavior of fluid has been studied intensively, the important question of the propagation of individual particles in the fluid has not. The project will study this question with stochastic models which are believed to capture the essential behavior of the fluid. (2) How does a wave travel in random media. It is believed that with high disorder, a wave in random media becomes loca lized. The important question is to analyze the low disorder region when a wave propagates. This can be considered as a model for conduction of current in a semiconductor, or propagation of radio waves or seismic waves. The practical equation governing all these diverse phenomena is the Boltzmann equation. This study will try to validate the Boltzmann equation from more basic models involving wave equations in random media and to understand its next order corrections or fluctuations.
小行星9703752 本文证明了不可压Navier-Stokes方程为 三维随机格子气模型流体动力学极限方程第一 项目调查了以下三个相关主题:(一)标记的缩放限制 粒子,(ii)平衡涨落和(iii)维度的适当时间尺度 1和2. 第一个问题强调的是一个典型粒子的个体行为 所有粒子的集体行为。第二个问题是关于中心极限定理的问题。第三个问题涉及1维和2维的时间尺度, 其被证明与3维中的扩散尺度非常不同。的 第二个项目研究吉布斯态的川崎动力学的弛豫速率, 无穷大的体积这被认为是幂律。该方法是基于庞加莱 不等式(谱隙),对数Sobolev不等式和一些熵估计。 第三个项目涉及量子粒子在随机势中的标度极限。 有两种极限情况:低密度极限和弱耦合极限。无论是 在某些情况下,通过Wigner定义的量子演化的相空间密度 变换或相干态预期弱收敛到线性玻尔兹曼 碰撞核由量子给出的方程 散射截面 本研究主要探讨了以下两个问题:(1)什么是 流体中单个粒子的典型行为尽管流体的集体行为 已经被深入研究,个体繁殖的重要问题 流体中的粒子没有。该项目将使用随机模型研究这个问题 其被认为捕获流体的基本行为。 (2)一个波浪 在随机介质中传播。人们相信,在高度无序的情况下,随机介质中的波 变得本地化。重要的问题是分析低无序区时, 波传播。这可以被认为是一个模型的传导电流在一个 半导体或无线电波或地震波的传播。实用方程式 控制所有这些不同现象的是玻尔兹曼方程。这项研究将试图 从涉及波动方程的更基本模型验证玻尔兹曼方程, 随机介质,并了解其下一阶校正或波动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Horng-Tzer Yau其他文献

TheN 7/5 law for charged bosons
  • DOI:
    10.1007/bf01229202
  • 发表时间:
    1988-09-01
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Joseph G. Conlon;Elliott H. Lieb;Horng-Tzer Yau
  • 通讯作者:
    Horng-Tzer Yau
A Half-Century of CMP
The Coulomb Gas at low temperature and low density
  • DOI:
    10.1007/bf01217775
  • 发表时间:
    1989-03-01
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Joseph G. Conlon;Elliott H. Lieb;Horng-Tzer Yau
  • 通讯作者:
    Horng-Tzer Yau
Quantum Diffusion for the Anderson Model in the Scaling Limit
  • DOI:
    10.1007/s00023-006-0318-0
  • 发表时间:
    2007-06-07
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    László Erdős;Manfred Salmhofer;Horng-Tzer Yau
  • 通讯作者:
    Horng-Tzer Yau

Horng-Tzer Yau的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Horng-Tzer Yau', 18)}}的其他基金

Random Matrices, Random Schrödinger Operators, and Applications
随机矩阵、随机薛定谔算子和应用
  • 批准号:
    2153335
  • 财政年份:
    2022
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Standard Grant
Random Matrices, Statistical Applications, and Spin Glass Dynamics
随机矩阵、统计应用和自旋玻璃动力学
  • 批准号:
    1855509
  • 财政年份:
    2019
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Geometric and Topological Methods for Analyzing Shapes
FRG:协作研究:分析形状的几何和拓扑方法
  • 批准号:
    1760471
  • 财政年份:
    2018
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Standard Grant
Random Matrix Theory and Applications
随机矩阵理论与应用
  • 批准号:
    1606305
  • 财政年份:
    2016
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Continuing Grant
Random Matrices and Disordered Systems
随机矩阵和无序系统
  • 批准号:
    1307444
  • 财政年份:
    2013
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Continuing Grant
Many-Body Quantum Dynamics and Quantum Disorder Systems
多体量子动力学和量子无序系统
  • 批准号:
    0804279
  • 财政年份:
    2008
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Quantum SpinSystems. Theory and Applications in Quantum Computation
FRG:合作研究:量子自旋系统。
  • 批准号:
    0757425
  • 财政年份:
    2008
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Standard Grant
Asymptotic Dynamics for Stochastic and Quantum Dynamics
随机和量子动力学的渐近动力学
  • 批准号:
    0602038
  • 财政年份:
    2005
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Continuing Grant
Asymptotic Dynamics for Stochastic and Quantum Dynamics
随机和量子动力学的渐近动力学
  • 批准号:
    0307295
  • 财政年份:
    2003
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Continuing Grant
Stochastic and Quantum Dynamics of Large Systems
大型系统的随机和量子动力学
  • 批准号:
    0072098
  • 财政年份:
    2000
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Continuing Grant

相似海外基金

Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
  • 批准号:
    24K06758
  • 财政年份:
    2024
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Macroscopic properties of discrete stochastic models and analysis of their scaling limits
离散随机模型的宏观性质及其标度极限分析
  • 批准号:
    23KK0050
  • 财政年份:
    2023
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Scaling limits of spatial stochastic differential equations
空间随机微分方程的标度极限
  • 批准号:
    RGPIN-2020-06500
  • 财政年份:
    2022
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Discovery Grants Program - Individual
Scaling limits of spatial stochastic differential equations
空间随机微分方程的标度极限
  • 批准号:
    RGPIN-2020-06500
  • 财政年份:
    2021
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Discovery Grants Program - Individual
Scaling limits of spatial stochastic differential equations
空间随机微分方程的标度极限
  • 批准号:
    DGECR-2020-00361
  • 财政年份:
    2020
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Discovery Launch Supplement
Scaling limits of spatial stochastic differential equations
空间随机微分方程的标度极限
  • 批准号:
    RGPIN-2020-06500
  • 财政年份:
    2020
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Partial Differential Equations, Gauge Theories, and Scaling Limits
随机偏微分方程、规范理论和标度极限
  • 批准号:
    1954091
  • 财政年份:
    2020
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Standard Grant
Scaling Limits via Stochastic Homogenization
通过随机均质化缩放限制
  • 批准号:
    1712841
  • 财政年份:
    2017
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Standard Grant
Scaling limits and stochastic partial differential equations (SPDE) in credit default risk
信用违约风险中的标度限制和随机偏微分方程 (SPDE)
  • 批准号:
    441890-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Stochastic processes on disordered media -- discrete models and their scaling limits
无序介质上的随机过程——离散模型及其尺度限制
  • 批准号:
    25247007
  • 财政年份:
    2013
  • 资助金额:
    $ 28.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了