Random Matrices, Random Schrödinger Operators, and Applications

随机矩阵、随机薛定谔算子和应用

基本信息

  • 批准号:
    2153335
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

The main objective of this project is to investigate the foundation of random matrix theory and its applications to Random Schrodinger operators and statistics. Classical probability theory has been a cornerstone to statistics; for current applications to large data statistics and artificial neural networks, the most basic objects are random matrices representing large data and noise. In this project, the PI will develop theoretical tools in analyzing the statistics of eigenvalues and eigenvectors of large random matrices, which are the fundamental objects in data analysis. Besides data matrices, the PI will also investigate the associated matrices of large random graphs and, in applications to mathematical physics, random Schrodinger operators. In order to enhance the exchange of ideas among different groups of researchers, seminars and other scientific events will be organized jointly with the Statisticsand Computer Science departments at the PI's institution and with other institutions in the area. These programs will bring together researchers from probability theory, statistics, combinatorics, mathematical physics, and computer science to work together on questions centered around the analysis of large random matrices that are interesting to these scientific communities. The project also provides research training opportunities for graduate students. The goal of the research funded by this award is to understand the foundation of random matrices and associated applications in data analysis and mathematical physics. One of the specific projects aims to explore the connection between random matrices and random Schrodinger operators. This project is a natural extension of the PI’s recent work on delocalization and quantum diffusion of random band matrices. This work shows that a mean-field model like Gaussian orthogonal ensemble or Gaussian unitary ensemble can be used to model non-mean-field models—in this case, band matrices. The PI anticipates that this project will lead to a solution (in a certain weak sense) of the long standing open problem regarding the delocalization of random Schrodinger operators. Another project aims to extend the existing theory concerning Dyson’s Brownian motion to eigenvectors of free convolution models. This project can be viewed as extending Dyson’s Brownian motion to a non-uniform setting. The third project concerns investigation of the eigenvalue and eigenvector statistics of the adjacency matrices of d-regular graphs for any degree d bigger than or equal to three. A long-term goal of this project is to show that the second largest eigenvalue distributes by the Tracy-Widom law up to a shift. A final project aims to develop methods to prove spectral gaps for the Glauber dynamics for spin glasses on hypercubes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本计画的主要目的是探讨随机矩阵理论的基础及其在随机薛定谔算子与统计上的应用。经典概率论一直是统计学的基石;对于当前大数据统计和人工神经网络的应用,最基本的对象是表示大数据和噪声的随机矩阵。在这个项目中,PI将开发理论工具来分析大型随机矩阵的特征值和特征向量的统计,这是数据分析的基本对象。除了数据矩阵,PI还将研究大型随机图的相关矩阵,并在数学物理中应用随机薛定谔算子。为了加强不同研究人员群体之间的思想交流,将与PI机构的统计和计算机科学部门以及该地区的其他机构联合组织研讨会和其他科学活动。这些计划将汇集来自概率论,统计学,组合学,数学物理和计算机科学的研究人员,共同研究围绕这些科学界感兴趣的大型随机矩阵分析的问题。该项目还为研究生提供研究培训机会。该奖项资助的研究目标是了解随机矩阵的基础以及数据分析和数学物理中的相关应用。其中一个具体项目旨在探索随机矩阵和随机薛定谔算子之间的联系。这个项目是PI最近关于随机带矩阵的离域和量子扩散的工作的自然延伸。这项工作表明,一个平均场模型,如高斯正交系综或高斯酉系综可以用来模拟非平均场模型,在这种情况下,带矩阵。PI预计,该项目将导致解决(在某种弱意义上)的长期开放的问题,关于随机薛定谔算子的离域。另一个项目旨在将现有的关于戴森布朗运动的理论扩展到自由卷积模型的特征向量。这个项目可以被看作是扩展戴森的布朗运动到一个非均匀设置。第三个项目是研究d-正则图的邻接矩阵的特征值和特征向量的统计性质,其中d是大于或等于3的任意度。这个项目的一个长期目标是证明第二大本征值的分布符合Tracy-Widom定律。 最后一个项目旨在开发方法来证明超立方体上自旋玻璃的Glauber动力学的光谱间隙。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Delocalization and Quantum Diffusion of Random Band Matrices in High Dimensions II: T-expansion
高维随机能带矩阵的离域和量子扩散 II:T 展开
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Horng-Tzer Yau其他文献

TheN 7/5 law for charged bosons
  • DOI:
    10.1007/bf01229202
  • 发表时间:
    1988-09-01
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Joseph G. Conlon;Elliott H. Lieb;Horng-Tzer Yau
  • 通讯作者:
    Horng-Tzer Yau
A Half-Century of CMP
The Coulomb Gas at low temperature and low density
  • DOI:
    10.1007/bf01217775
  • 发表时间:
    1989-03-01
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Joseph G. Conlon;Elliott H. Lieb;Horng-Tzer Yau
  • 通讯作者:
    Horng-Tzer Yau
Quantum Diffusion for the Anderson Model in the Scaling Limit
  • DOI:
    10.1007/s00023-006-0318-0
  • 发表时间:
    2007-06-07
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    László Erdős;Manfred Salmhofer;Horng-Tzer Yau
  • 通讯作者:
    Horng-Tzer Yau

Horng-Tzer Yau的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Horng-Tzer Yau', 18)}}的其他基金

Random Matrices, Statistical Applications, and Spin Glass Dynamics
随机矩阵、统计应用和自旋玻璃动力学
  • 批准号:
    1855509
  • 财政年份:
    2019
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Geometric and Topological Methods for Analyzing Shapes
FRG:协作研究:分析形状的几何和拓扑方法
  • 批准号:
    1760471
  • 财政年份:
    2018
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Random Matrix Theory and Applications
随机矩阵理论与应用
  • 批准号:
    1606305
  • 财政年份:
    2016
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Random Matrices and Disordered Systems
随机矩阵和无序系统
  • 批准号:
    1307444
  • 财政年份:
    2013
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Many-Body Quantum Dynamics and Quantum Disorder Systems
多体量子动力学和量子无序系统
  • 批准号:
    0804279
  • 财政年份:
    2008
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Quantum SpinSystems. Theory and Applications in Quantum Computation
FRG:合作研究:量子自旋系统。
  • 批准号:
    0757425
  • 财政年份:
    2008
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Asymptotic Dynamics for Stochastic and Quantum Dynamics
随机和量子动力学的渐近动力学
  • 批准号:
    0602038
  • 财政年份:
    2005
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Asymptotic Dynamics for Stochastic and Quantum Dynamics
随机和量子动力学的渐近动力学
  • 批准号:
    0307295
  • 财政年份:
    2003
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Stochastic and Quantum Dynamics of Large Systems
大型系统的随机和量子动力学
  • 批准号:
    0072098
  • 财政年份:
    2000
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Scaling Limits for Stochastic and Quantum Dynamics
随机和量子动力学的标度极限
  • 批准号:
    9703752
  • 财政年份:
    1997
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant

相似海外基金

Reconfigurable Intelligent Surfaces 2.0 for 6G: Beyond Diagonal Phase Shift Matrices
适用于 6G 的可重构智能表面 2.0:超越对角相移矩阵
  • 批准号:
    EP/Y004086/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Research Grant
Designing synthetic matrices for enhanced organoid development: A step towards better disease understanding
设计合成基质以增强类器官发育:更好地了解疾病的一步
  • 批准号:
    MR/Y033760/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Research Grant
2024 Signal Transduction in Engineered Extracellular Matrices Gordon Research Conference and Seminar; Southern New Hampshire University, Manchester, New Hampshire; 20-26 July 2024
2024年工程细胞外基质信号转导戈登研究会议及研讨会;
  • 批准号:
    2414497
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Electrospun mucoadhesive matrices for polymersome-mediated mRNA vaccine delivery
用于聚合物囊泡介导的 mRNA 疫苗递送的电纺粘膜粘附基质
  • 批准号:
    BB/Y007514/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Research Grant
Random Matrices and Functional Inequalities on Spaces of Graphs
图空间上的随机矩阵和函数不等式
  • 批准号:
    2331037
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
  • 批准号:
    2306438
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Some topics in Analysis and Probability in Metric Measure Spaces, Random Matrices, and Diffusions
度量测度空间、随机矩阵和扩散中的分析和概率中的一些主题
  • 批准号:
    2247117
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Novel Bioprinted Neural Stem Cell-Embedded Hydrogel Matrices for Enhanced Treatment of Glioblastoma
新型生物打印神经干细胞嵌入水凝胶基质,用于增强胶质母细胞瘤的治疗
  • 批准号:
    10749330
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
Random Matrices, Random Graphs, and Deep Neural Networks
随机矩阵、随机图和深度神经网络
  • 批准号:
    2331096
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Asymptotics of Toeplitz determinants, soft Riemann-Hilbert problems and generalised Hilbert matrices (HilbertToeplitz)
Toeplitz 行列式的渐进性、软黎曼-希尔伯特问题和广义希尔伯特矩阵 (HilbertToeplitz)
  • 批准号:
    EP/X024555/1
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了