Random Matrices and Disordered Systems
随机矩阵和无序系统
基本信息
- 批准号:1307444
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2017-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the recent work, the universality conjecture for the local spectral statistics was solved for both Winger ensembles and beta ensembles. The goal of this proposal is to extend this understanding to large classes of random matrices. The objective is to understand the grand vision of Wigner, which asserts that local spectral statistics of large correlated quantum systems are universal. Specifically, the following projects are proposed: 1. The spectral properties of Wigner matrices with random potentials. These are toy models for random Schrodinger operators on lattice. 2. The statistics of both eigenvalues and eigenvectors in band and sparse matrices. In addition to these two projects, local statistics at the level of individual eigenvalues will also be studied. More specifically, the intention is to look into the following problems: 3. The single gap universality, i.e., identify the probability distribution of a single gap in random matrices. 4. The universality of local statistics at a fixed energy. 5. Identify the Gaussian fluctuations of a single eigenvalue in Wigner matrices, i.e., extending Gustavsson's result for GUE to all Wigner matrices. 6. Establish the edge universality via Dyson's Brownian motion. These problems will be approached using the Helffer and Sjostrand representation of correlation functions and the parabolic regularity in the work of Caffarelli, Chan and Vasseur. Eugene Wigner's grand vision asserts that local spectral statistics of large correlated quantum systems are universal. In our recent work, we solved the universality conjecture for the local spectral statistics for both Wigner ensembles and beta ensembles. The goal of this proposal is to extend these findings to large classes of random matrices and expand our understanding of Wigner's vision.
在最近的工作中,求解了Winger系综和beta系综的局部谱统计量的普适性猜想。本建议的目标是将这种理解扩展到大的随机矩阵类。目标是理解维格纳的宏大愿景,他断言大型相关量子系统的局部谱统计是普遍的。具体而言,提出以下项目:具有随机势的Wigner矩阵的谱性质。这些是晶格上随机薛定谔算子的玩具模型。2. 特征值和特征向量在频带和稀疏矩阵中的统计量。除了这两个项目外,还将研究个体特征值水平上的局部统计。更具体地说,目的是研究以下问题:单间隙通用性,即识别随机矩阵中单间隙的概率分布。4. 定能局部统计量的普适性。5. 识别Wigner矩阵中单个特征值的高斯涨落,即将Gustavsson关于GUE的结果推广到所有Wigner矩阵。6. 通过戴森布朗运动建立边的普适性。这些问题将使用Helffer和Sjostrand的相关函数表示和Caffarelli, Chan和Vasseur的工作中的抛物正则性来处理。尤金·维格纳(Eugene Wigner)的宏大愿景断言,大型相关量子系统的局部谱统计是普遍的。在我们最近的工作中,我们解决了Wigner系综和beta系综的局部谱统计量的普适性猜想。本提案的目标是将这些发现扩展到大型随机矩阵,并扩展我们对维格纳愿景的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Horng-Tzer Yau其他文献
TheN 7/5 law for charged bosons
- DOI:
10.1007/bf01229202 - 发表时间:
1988-09-01 - 期刊:
- 影响因子:2.600
- 作者:
Joseph G. Conlon;Elliott H. Lieb;Horng-Tzer Yau - 通讯作者:
Horng-Tzer Yau
A Half-Century of CMP
- DOI:
10.1007/s00220-016-2726-4 - 发表时间:
2016-08-31 - 期刊:
- 影响因子:2.600
- 作者:
Horng-Tzer Yau - 通讯作者:
Horng-Tzer Yau
The Coulomb Gas at low temperature and low density
- DOI:
10.1007/bf01217775 - 发表时间:
1989-03-01 - 期刊:
- 影响因子:2.600
- 作者:
Joseph G. Conlon;Elliott H. Lieb;Horng-Tzer Yau - 通讯作者:
Horng-Tzer Yau
Quantum Diffusion for the Anderson Model in the Scaling Limit
- DOI:
10.1007/s00023-006-0318-0 - 发表时间:
2007-06-07 - 期刊:
- 影响因子:1.300
- 作者:
László Erdős;Manfred Salmhofer;Horng-Tzer Yau - 通讯作者:
Horng-Tzer Yau
Horng-Tzer Yau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Horng-Tzer Yau', 18)}}的其他基金
Random Matrices, Random Schrödinger Operators, and Applications
随机矩阵、随机薛定谔算子和应用
- 批准号:
2153335 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Random Matrices, Statistical Applications, and Spin Glass Dynamics
随机矩阵、统计应用和自旋玻璃动力学
- 批准号:
1855509 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Geometric and Topological Methods for Analyzing Shapes
FRG:协作研究:分析形状的几何和拓扑方法
- 批准号:
1760471 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Many-Body Quantum Dynamics and Quantum Disorder Systems
多体量子动力学和量子无序系统
- 批准号:
0804279 - 财政年份:2008
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Quantum SpinSystems. Theory and Applications in Quantum Computation
FRG:合作研究:量子自旋系统。
- 批准号:
0757425 - 财政年份:2008
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Asymptotic Dynamics for Stochastic and Quantum Dynamics
随机和量子动力学的渐近动力学
- 批准号:
0602038 - 财政年份:2005
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Asymptotic Dynamics for Stochastic and Quantum Dynamics
随机和量子动力学的渐近动力学
- 批准号:
0307295 - 财政年份:2003
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Stochastic and Quantum Dynamics of Large Systems
大型系统的随机和量子动力学
- 批准号:
0072098 - 财政年份:2000
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Scaling Limits for Stochastic and Quantum Dynamics
随机和量子动力学的标度极限
- 批准号:
9703752 - 财政年份:1997
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
相似海外基金
Reconfigurable Intelligent Surfaces 2.0 for 6G: Beyond Diagonal Phase Shift Matrices
适用于 6G 的可重构智能表面 2.0:超越对角相移矩阵
- 批准号:
EP/Y004086/1 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Research Grant
Designing synthetic matrices for enhanced organoid development: A step towards better disease understanding
设计合成基质以增强类器官发育:更好地了解疾病的一步
- 批准号:
MR/Y033760/1 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Research Grant
2024 Signal Transduction in Engineered Extracellular Matrices Gordon Research Conference and Seminar; Southern New Hampshire University, Manchester, New Hampshire; 20-26 July 2024
2024年工程细胞外基质信号转导戈登研究会议及研讨会;
- 批准号:
2414497 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Electrospun mucoadhesive matrices for polymersome-mediated mRNA vaccine delivery
用于聚合物囊泡介导的 mRNA 疫苗递送的电纺粘膜粘附基质
- 批准号:
BB/Y007514/1 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Research Grant
Random Matrices and Functional Inequalities on Spaces of Graphs
图空间上的随机矩阵和函数不等式
- 批准号:
2331037 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Collaborative Research: Random Matrices and Algorithms in High Dimension
合作研究:高维随机矩阵和算法
- 批准号:
2306438 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Some topics in Analysis and Probability in Metric Measure Spaces, Random Matrices, and Diffusions
度量测度空间、随机矩阵和扩散中的分析和概率中的一些主题
- 批准号:
2247117 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Novel Bioprinted Neural Stem Cell-Embedded Hydrogel Matrices for Enhanced Treatment of Glioblastoma
新型生物打印神经干细胞嵌入水凝胶基质,用于增强胶质母细胞瘤的治疗
- 批准号:
10749330 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Random Matrices, Random Graphs, and Deep Neural Networks
随机矩阵、随机图和深度神经网络
- 批准号:
2331096 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Asymptotics of Toeplitz determinants, soft Riemann-Hilbert problems and generalised Hilbert matrices (HilbertToeplitz)
Toeplitz 行列式的渐进性、软黎曼-希尔伯特问题和广义希尔伯特矩阵 (HilbertToeplitz)
- 批准号:
EP/X024555/1 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Fellowship