FRG: Collaborative Research: Quantum SpinSystems. Theory and Applications in Quantum Computation

FRG:合作研究:量子自旋系统。

基本信息

  • 批准号:
    0757425
  • 负责人:
  • 金额:
    $ 28.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-15 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

This award supports the work of a group of seven researchers, Sergey Bravyi, Matthew Hastings, Bruno Nachtergaele, Robert Sims, Shannon Starr, Barbara Terhal, and Horng-Tzer Yau, on three clusters of problems in the mathematical theory of quantum spin systems. The first cluster, locality and Lieb-Robinson bounds, spin diffusion, and large-spin asymptotics, is aimed at improving understanding of quantum lattice dynamics. The second cluster focuses on ground state properties: area laws for the local entropy and entanglement, the spectral gap above the ground state and its relation with the behavior of correlation functions, and the quality of approximation of ground states by matrix product states. The third cluster contains a number of questions in computational complexity theory: computational complexity classes, QMA-completeness, the connection between gapped Hamiltonians and complexity, and the computational power of stoquastic Hamiltonians, all of which relate to quantum spin systems.Condensed matter physicists, mathematical physicists, functional analysts, workers in quantum computation, and computer scientists recently have begun to discover the close relationships that exist between several of the important questions in their respective fields. A small number of key properties about quantum spin Hamiltonians, the dynamics they generate, and their ground states are the main ingredients needed to address questions about the physical behavior of quantum spin models, about the computational efficiency of numerical algorithms to compute ground state properties and simulate dynamics, and about new complexity classes that are emerging in the theory of quantum computation. This project brings together experts in condensed matter physics, functional analysis and spectral theory, probability theory, and computer science to develop a coherent mathematical theory that clarifies the interrelationships of these key properties and, in particular, their relevance for the emerging field of quantum complexity theory in the context of quantum computation.
该奖项支持七名研究人员的工作,Sergey Bravyi,Matthew Hastings,Bruno Nachtergaele,Robert西姆斯,Shannon Starr,Barbara Terhal和Horng-Tzer Yau,在量子自旋系统数学理论中的三个问题集群。 第一个簇、局域性和Lieb-Robinson边界、自旋扩散和大自旋渐近性旨在提高对量子晶格动力学的理解。 第二个集群集中在基态的属性:当地的熵和纠缠,光谱间隙以上的基态和相关函数的行为,和矩阵乘积态的近似基态的质量的法律。 第三类包含计算复杂性理论中的一些问题:计算复杂性类,QMA完备性,间隙哈密顿量和复杂性之间的联系,以及随机哈密顿量的计算能力,所有这些都与量子自旋系统有关。凝聚态物理学家,数学物理学家,泛函分析师,量子计算工作者,计算机科学家最近开始发现他们各自领域中几个重要问题之间存在的密切关系。 关于量子自旋哈米顿算符、它们产生的动力学及其基态的少量关键性质是解决有关量子自旋模型的物理行为、计算基态性质和模拟动力学的数值算法的计算效率的问题所需的主要成分,以及量子计算理论中出现的新复杂性类别。 该项目汇集了凝聚态物理学,泛函分析和光谱理论,概率论和计算机科学的专家,以开发一个连贯的数学理论,阐明这些关键属性的相互关系,特别是它们与量子计算背景下的量子复杂性理论的新兴领域的相关性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Horng-Tzer Yau其他文献

TheN 7/5 law for charged bosons
  • DOI:
    10.1007/bf01229202
  • 发表时间:
    1988-09-01
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Joseph G. Conlon;Elliott H. Lieb;Horng-Tzer Yau
  • 通讯作者:
    Horng-Tzer Yau
A Half-Century of CMP
The Coulomb Gas at low temperature and low density
  • DOI:
    10.1007/bf01217775
  • 发表时间:
    1989-03-01
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Joseph G. Conlon;Elliott H. Lieb;Horng-Tzer Yau
  • 通讯作者:
    Horng-Tzer Yau
Quantum Diffusion for the Anderson Model in the Scaling Limit
  • DOI:
    10.1007/s00023-006-0318-0
  • 发表时间:
    2007-06-07
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    László Erdős;Manfred Salmhofer;Horng-Tzer Yau
  • 通讯作者:
    Horng-Tzer Yau

Horng-Tzer Yau的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Horng-Tzer Yau', 18)}}的其他基金

Random Matrices, Random Schrödinger Operators, and Applications
随机矩阵、随机薛定谔算子和应用
  • 批准号:
    2153335
  • 财政年份:
    2022
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Standard Grant
Random Matrices, Statistical Applications, and Spin Glass Dynamics
随机矩阵、统计应用和自旋玻璃动力学
  • 批准号:
    1855509
  • 财政年份:
    2019
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Geometric and Topological Methods for Analyzing Shapes
FRG:协作研究:分析形状的几何和拓扑方法
  • 批准号:
    1760471
  • 财政年份:
    2018
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Standard Grant
Random Matrix Theory and Applications
随机矩阵理论与应用
  • 批准号:
    1606305
  • 财政年份:
    2016
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Continuing Grant
Random Matrices and Disordered Systems
随机矩阵和无序系统
  • 批准号:
    1307444
  • 财政年份:
    2013
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Continuing Grant
Many-Body Quantum Dynamics and Quantum Disorder Systems
多体量子动力学和量子无序系统
  • 批准号:
    0804279
  • 财政年份:
    2008
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Continuing Grant
Asymptotic Dynamics for Stochastic and Quantum Dynamics
随机和量子动力学的渐近动力学
  • 批准号:
    0602038
  • 财政年份:
    2005
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Continuing Grant
Asymptotic Dynamics for Stochastic and Quantum Dynamics
随机和量子动力学的渐近动力学
  • 批准号:
    0307295
  • 财政年份:
    2003
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Continuing Grant
Stochastic and Quantum Dynamics of Large Systems
大型系统的随机和量子动力学
  • 批准号:
    0072098
  • 财政年份:
    2000
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Continuing Grant
Scaling Limits for Stochastic and Quantum Dynamics
随机和量子动力学的标度极限
  • 批准号:
    9703752
  • 财政年份:
    1997
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Continuing Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 28.9万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了