Mathematical Sciences: Symplectic Topology and Its Applications to String Theory

数学科学:辛拓扑及其在弦理论中的应用

基本信息

  • 批准号:
    9704466
  • 负责人:
  • 金额:
    $ 7.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-07-15 至 2001-06-30
  • 项目状态:
    已结题

项目摘要

9703870 Ruan This project lies in the area of Kahler geometry and its application to mirror symmetry. More specifically, the investigator is to use the idea of Kahler or Riemannian collapsing - a sequence of Kahler manifolds and their limit manifold are considered - to further our understanding of mirror symmetry. Riemannian manifolds are curved spaces equipped with a notion of distance, also called a metric. The totality of (compact) Riemannian manifolds itself can be given a metric so that when given an infinite collection of such manifolds it makes sense to talk about clustering or converging. Mirror symmetry is a phenomenon first discovered by physicists: in the popular 10-dimensional string theory model of the universe, the invisible 6-dimensions arise as so called Calabi-Yau manifolds possessing certain symmetry.
9703870阮这个项目属于Kahler几何及其在镜像对称中的应用。更具体地说,研究者将使用Kahler或riemanian坍缩的概念——考虑Kahler流形序列及其极限流形——来进一步理解镜像对称。黎曼流形是具有距离概念的弯曲空间,也称为度规。(紧)黎曼流形的总体本身可以给定一个度规,因此当给定这样的流形的无限集合时,讨论聚类或收敛是有意义的。镜像对称是物理学家首先发现的一种现象:在流行的10维宇宙弦理论模型中,不可见的6维以具有一定对称性的所谓Calabi-Yau流形出现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yongbin Ruan其他文献

The period map for quantum cohomology of P^2
P^2 量子上同调的周期图
  • DOI:
    10.1016/j.aim.2019.05.011
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Hiroshi Iritani;Todor Milanov;Yongbin Ruan;and Yefeng Shen;Jipeng Cheng and Todor Milanov;Todor Milanov and Chenghan Zha;Todor Milanov;Jipeng Cheng and Todor Milanov;Todor Milanov;Todor Milanov
  • 通讯作者:
    Todor Milanov
Mirror symmetry for toric stacks and its application
复曲面叠层的镜面对称及其应用
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alessandro Chiodo;*Hiroshi Iritani;Yongbin Ruan;Hiroshi Iritani;Hiroshi Iritani
  • 通讯作者:
    Hiroshi Iritani
Fock Sheaf of Givental Quantization
给定量化的福克束
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alessandro Chiodo;Hiroshi Iritani;Yongbin Ruan;M. Hirasawa;Hiroshi Iritani
  • 通讯作者:
    Hiroshi Iritani
Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalenc
Landau-Ginzburg/Calabi-Yau 对应、全局镜像对称和 Orlov 等价
Introduction to varifold and its curvature flow
varifold及其曲率流简介
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alessandro Chiodo;*Hiroshi Iritani;Yongbin Ruan;岡田一志;Y. Kimura & H.K. Moffatt;T. Kobayashi;Y. Tonegawa
  • 通讯作者:
    Y. Tonegawa

Yongbin Ruan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yongbin Ruan', 18)}}的其他基金

Great Lakes Geometry Conference
五大湖几何会议
  • 批准号:
    1506543
  • 财政年份:
    2015
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Gromov-Witten Theory of Calabi-Yau Varieties
卡拉比-丘品种的格罗莫夫-维滕理论
  • 批准号:
    1405245
  • 财政年份:
    2014
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Gromov-Witten Theory
FRG:合作研究:格罗莫夫-维滕理论
  • 批准号:
    1159265
  • 财政年份:
    2012
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Gromov-Witten theory
格罗莫夫-维滕理论
  • 批准号:
    1103368
  • 财政年份:
    2011
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Gromov-Witten Theory and its Applications
格罗莫夫-维滕理论及其应用
  • 批准号:
    0803193
  • 财政年份:
    2008
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Great Lakes Geometry Conference, October 30 - November 2, 2008
五大湖几何会议,2008 年 10 月 30 日至 11 月 2 日
  • 批准号:
    0812776
  • 财政年份:
    2008
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Stringy geometry and topology of orbifold
Orbifold 的弦几何和拓扑
  • 批准号:
    0631508
  • 财政年份:
    2006
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Stringy geometry and topology of orbifold
Orbifold 的弦几何和拓扑
  • 批准号:
    0305125
  • 财政年份:
    2003
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Quantum Cohomology and Birational Geometry
量子上同调和双有理几何
  • 批准号:
    0072282
  • 财政年份:
    2000
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Symplectric Topology and It's Applications to String Theory
数学科学:辛拓扑及其在弦理论中的应用
  • 批准号:
    9896063
  • 财政年份:
    1997
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Conference on Symplectic Geometry and Topology at the International Center for Mathematical Sciences
国际数学科学中心辛几何和拓扑会议
  • 批准号:
    1608194
  • 财政年份:
    2016
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Symplectic and Contact Structures and Low Dimensional Topology
数学科学:辛和接触结构以及低维拓扑
  • 批准号:
    9625654
  • 财政年份:
    1996
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Applications of Radon Transforms and Symplectic Geometry
数学科学:氡变换和辛几何的应用
  • 批准号:
    9626880
  • 财政年份:
    1996
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Symplectic and Contact Geometry and Topology, and Their Applications
数学科学:辛几何和接触几何与拓扑及其应用
  • 批准号:
    9626430
  • 财政年份:
    1996
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Symplectic Geometry: Moduli Spaces and Manifold Invariants
数学科学:辛几何:模空间和流形不变量
  • 批准号:
    9796191
  • 财政年份:
    1996
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Symplectic and Complex Geometry
数学科学:辛几何和复几何
  • 批准号:
    9504898
  • 财政年份:
    1995
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Topology, Symplectic Geometry and Equivariant Algebraic Geometry
数学科学:拓扑学、辛几何和等变代数几何
  • 批准号:
    9401858
  • 财政年份:
    1995
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometry and Topology of Quotients in Algebraic and Symplectic Geometry
数学科学:代数和辛几何中商的几何和拓扑
  • 批准号:
    9696104
  • 财政年份:
    1995
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Symplectic Methods in Bifuration Theory, Hamiltonian Dynamics, and Lie Theory
数学科学:分叉理论、哈密顿动力学和李理论中的辛方法
  • 批准号:
    9503273
  • 财政年份:
    1995
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Symplectic Topology & Riemannian Geometry of Lagrangian Submanifolds
数学科学:辛拓扑
  • 批准号:
    9504455
  • 财政年份:
    1995
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了