The Numerical Solution of Elliptic Equations
椭圆方程的数值解
基本信息
- 批准号:9704852
- 负责人:
- 金额:$ 1.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-15 至 2000-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9704852 Parter These investigations will focus on three specific projects: (1) First Order Systems Least Square (FOSLS) methods with a special emphasis on problems in elasticity, (2) the general over-lapping grid problem, and (3) preconditioning strategies for Spectral Collocation Methods. At this time computational methods for problems in elasticity are primarily based on mixed methods which lead to indefinite problems which have proven difficult to solve. The FOSLS approach leads to large systems which are generally much easier to solve. However, despite the efforts of several independent groups, a useful FOSLS formulation of the elasticity problems for general boundary conditions is still a major problem. The overlapping grid method has proven itself an effective tool for problems set in regions with complicated geometry. Further, the analysis of these methods has been lacking until a recent breakthrough for difference equations of positive type. Since there are limitations on the order of accuracy of such difference methods there is a need for further analysis. Spectral Collocation methods are extremely accurate and very badly conditioned. Hence preconditioning strategies are essential. There are over twenty-five years of experience and study of preconditioning methods. And, still, there is a need for better approaches. Moreover, the mathematical justification for some of these methods is incomplete. The basic theme of this research can be stated simply "Find effective numerical methods to solve the important boundary-value problems of mechanics and material science, and provide mathematical proofs of their validity." In the problems of elasticity most of the methods now in use are expensive to implement. Hence, a new formulation is sought which will provide accurate approximations which can be computed at a reasonable cost. In the other two cases one is dealing with established methods which are either difficult to impleme nt or whose mathematical basis is incomplete. This research is aimed at a more complete mathematical understanding which will both clarify the existing methods and provide a basis for the development of new, more effective methods.
这些研究将集中在三个具体项目上:(1)一阶系统最小二乘(FOSLS)方法,特别强调弹性问题;(2)一般重叠网格问题;(3)谱配置方法的预处理策略。目前,弹性问题的计算方法主要是基于混合方法,这导致了不确定的问题,已被证明是难以解决的。FOSLS方法产生的大型系统通常更容易解决。然而,尽管有几个独立的小组做出了努力,但对于一般边界条件的弹性问题的有用的FOSLS公式仍然是一个主要问题。重叠网格法已被证明是求解复杂几何区域问题的有效工具。此外,对这些方法的分析一直缺乏,直到最近对正型差分方程的突破。由于这些不同方法的精度顺序存在限制,因此需要进一步分析。谱配置方法非常精确,但条件很差。因此,预处理策略是必不可少的。有超过25年的经验和预处理方法的研究。而且,我们仍然需要更好的方法。此外,其中一些方法的数学证明是不完整的。本研究的基本主题可以简单地表述为“寻找解决力学和材料科学中重要边值问题的有效数值方法,并提供其有效性的数学证明”。在弹性问题中,目前使用的大多数方法实现起来都很昂贵。因此,寻求一种新的公式,它将提供精确的近似值,可以以合理的成本计算出来。在另外两种情况下,一个是处理既定的方法,这些方法要么难以实现,要么数学基础不完整。这项研究的目的是为了一个更完整的数学理解,这将澄清现有的方法,并为开发新的,更有效的方法提供基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seymour Parter其他文献
Seymour Parter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Seymour Parter', 18)}}的其他基金
The Effective Numerical Solution of Elliptic Equations
椭圆方程的有效数值解
- 批准号:
9501256 - 财政年份:1995
- 资助金额:
$ 1.73万 - 项目类别:
Standard Grant
Mathematical Sciences: Effective Numerical Solution of Elliptic Equations
数学科学:椭圆方程的有效数值解
- 批准号:
9203502 - 财政年份:1992
- 资助金额:
$ 1.73万 - 项目类别:
Standard Grant
Mathematical Sciences: Numerical Solution of Elliptic Equations
数学科学:椭圆方程的数值解
- 批准号:
8913091 - 财政年份:1989
- 资助金额:
$ 1.73万 - 项目类别:
Continuing Grant
相似国自然基金
相似海外基金
An efficient, accurate and robust solution technique for variable coefficient elliptic partial differential equations in complex geometries
复杂几何中变系数椭圆偏微分方程的高效、准确和稳健的求解技术
- 批准号:
2110886 - 财政年份:2021
- 资助金额:
$ 1.73万 - 项目类别:
Standard Grant
Differential equations reduced to transcendental equations including complete elliptic integrals and their global solution structure
微分方程简化为超越方程,包括完全椭圆积分及其全局解结构
- 批准号:
21540232 - 财政年份:2009
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Shape calculus for the efficient solution of shape optimization problems with elliptic and parabolic state equation
用于有效求解椭圆和抛物线状态方程形状优化问题的形状微积分
- 批准号:
25167817 - 财政年份:2006
- 资助金额:
$ 1.73万 - 项目类别:
Priority Programmes
A comparative study of generalised solution concepts for elliptic partial differential equations using nonsmooth analysis techniques
使用非光滑分析技术对椭圆偏微分方程广义解概念的比较研究
- 批准号:
DP0451168 - 财政年份:2004
- 资助金额:
$ 1.73万 - 项目类别:
Discovery Projects
Direct numerical solution to the inverse boundary-value problem of elliptic equations by using the adjoint variational method.
使用伴随变分法直接数值求解椭圆方程反边值问题。
- 批准号:
14540099 - 财政年份:2002
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Fast Spectral-Galerkin Algorithms for Elliptic Problems and Efficient Solution Techniques for Unsteady Navier-Stokes Equations
数学科学:椭圆问题的快速谱伽辽金算法和非定常纳维-斯托克斯方程的高效求解技术
- 批准号:
9623020 - 财政年份:1996
- 资助金额:
$ 1.73万 - 项目类别:
Standard Grant
The Effective Numerical Solution of Elliptic Equations
椭圆方程的有效数值解
- 批准号:
9501256 - 财政年份:1995
- 资助金额:
$ 1.73万 - 项目类别:
Standard Grant
Mathematical Sciences: Effective Numerical Solution of Elliptic Equations
数学科学:椭圆方程的有效数值解
- 批准号:
9203502 - 财政年份:1992
- 资助金额:
$ 1.73万 - 项目类别:
Standard Grant
The Solution of Linear Elliptic Equations Via the Sinc- Galerkin Spectral Method
线性椭圆方程的Sinc-Galerkin谱法解
- 批准号:
8907895 - 财政年份:1989
- 资助金额:
$ 1.73万 - 项目类别:
Standard Grant
Mathematical Sciences: Numerical Solution of Elliptic Equations
数学科学:椭圆方程的数值解
- 批准号:
8913091 - 财政年份:1989
- 资助金额:
$ 1.73万 - 项目类别:
Continuing Grant