Direct numerical solution to the inverse boundary-value problem of elliptic equations by using the adjoint variational method.

使用伴随变分法直接数值求解椭圆方程反边值问题。

基本信息

  • 批准号:
    14540099
  • 负责人:
  • 金额:
    $ 1.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

Inverse boundary-value problem of the Laplacs-Poissoon equation as tipical one of equations of the elliptic type is considered. A new technique for numerical solution of the equation. called high order finite difference method, is developed especially for approximate solution of the problem that is known to be ill-posed in the sense of Hadamard. This new numerical technique belongs to the class of quasi-spectral methods, allowing any number of grid points distributed arbitrarily over the domain of interest with its boundary included. The technique is based on the interpolation using exponential functions as approximating base functions. We can expect extremely high accuracy of the order of about several tens to the technique. However, as the order of accuracy increases, the conditioning of the linear system of equations to be solved gets worse. Therefore a special attention should be paid to numerical implementation of the technique on computers. We employ the extended floating point library, developed by Dr.Fujiwara of the Kyoto University, as a remedy against rounding errors in the numerical treatment of the ill-conditioned linear system. Two hundreds decimal digits are used in practice.The adjoint variational method is extensively applied to the coefficient identification problem of equations of the hyperbolic type. The scalar wave equation and the dynamic Navies equations in elasticity are considered. A reconstruction algorithm is developed for identification of Lame constants in linear elastic wave field from displacements and surface traction observed on the boundary. The algorithm has a nature of iterative procedure, in which the cost function is to be minimized by using the gradient of the sum of related functional and a penalty function. The method is shown to be more effective relative to the conventional identification methods through numerical experiments.
本文研究了一类椭圆型方程Laplacs-Poissoon方程的边值反问题。方程数值解的一种新方法。高阶有限差分法是专门为求解Hadamard意义下的不适定问题而发展起来的。这种新的数值技术属于类的准谱方法,允许任意数量的网格点分布在域的兴趣,其边界包括在内。该技术是基于使用指数函数作为近似基函数的插值。我们可以期望该技术具有极高的精度,约为几十级。然而,随着精度阶数的增加,待求解的线性方程组的条件变差。因此,应特别注意在计算机上数值实现的技术。我们采用扩展的浮点库,由京都大学的藤原博士开发的,作为对病态线性系统的数值处理中的舍入误差的补救措施。伴随变分法广泛应用于双曲型方程的系数识别问题。考虑了弹性力学中的标量波动方程和动力Navies方程。本文提出了一种由边界上的位移和表面张力识别线弹性波场中拉梅常数的重建算法。该算法具有迭代过程的性质,利用相关泛函之和的梯度与罚函数来最小化代价函数。数值实验表明,该方法相对于传统的辨识方法是更有效的。

项目成果

期刊论文数量(42)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lattice-free finite difference method for backward heat conduction problems(invited)
向后热传导问题的无格有限差分法(特邀)
A numerical computation for inverse boundary value problems by using the adioint method
逆边值问题的adioint法数值计算
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vincent Blanlceil;Osamu Saeki;Kazuhiro Sakuma;Kazuei Onishi;青木貴史他;大西 和榮
  • 通讯作者:
    大西 和榮
Inverse boundary value problem for ocean acoustics using point sources
Adjoint methods for numerical solution of inverse boundary value and coefficient identification problems.
逆边值和系数识别问题数值求解的伴随方法。
Reconstruction of inclusion for the inverse boundary value problem with mixed boundary condition and source term.
混合边界条件和源项的逆边值问题的包含重构。
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y.Daido;G.Nakamura
  • 通讯作者:
    G.Nakamura
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ONISHI Kazuei其他文献

ONISHI Kazuei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ONISHI Kazuei', 18)}}的其他基金

Development of highly accurate numerical method based on finite differences and its application to ill-posed problems of partial differential equations.
基于有限差分的高精度数值方法的发展及其在偏微分方程不适定问题中的应用。
  • 批准号:
    18540108
  • 财政年份:
    2006
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical analysis of flows directly associated with environmental problems.
对与环境问题直接相关的流量进行数学分析。
  • 批准号:
    10640100
  • 财政年份:
    1998
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical analysis of water and air flow in the life and its computer simulation.
生活中水和空气流动的数学分析及其计算机模拟。
  • 批准号:
    08640305
  • 财政年份:
    1996
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Co-operative Research on Numerical Analysis of Partial Differential Equations Applied to High Technology.
偏微分方程数值分析应用于高科技的合作研究。
  • 批准号:
    04305013
  • 财政年份:
    1992
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)

相似海外基金

Development of inverse problem analysis for internal damage of materials using data assimilation
利用数据同化开发材料内部损伤反问题分析
  • 批准号:
    23K17336
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Inverse problem theory for innovation of detection methods
检测方法创新的反问题理论
  • 批准号:
    23KK0049
  • 财政年份:
    2023
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Research on inverse problem analysis of viscoelastic equations
粘弹性方程反问题分析研究
  • 批准号:
    22K03366
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
3D tracking system for micro magnetization vector realized by inverse problem algorithm
反问题算法实现的微磁化矢量3D跟踪系统
  • 批准号:
    22K04246
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Lab-Data-Enabled Modeling, Numerical Methods, and Validation for a Three-Dimensional Interface Inverse Problem for Plasma-Material Interactions
协作研究:等离子体-材料相互作用的三维界面反问题的实验室数据建模、数值方法和验证
  • 批准号:
    2111039
  • 财政年份:
    2021
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Standard Grant
Development of typhoon ensemble forecasting system based on the source inverse problem of potential vorticity
基于位涡源反问题的台风集合预报系统研制
  • 批准号:
    21H01431
  • 财政年份:
    2021
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Lab-Data-Enabled Modeling, Numerical Methods, and Validation for a Three-Dimensional Interface Inverse Problem for Plasma-Material Interactions
协作研究:等离子体-材料相互作用的三维界面反问题的实验室数据建模、数值方法和验证
  • 批准号:
    2110833
  • 财政年份:
    2021
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Standard Grant
Damage mechanism analysis of third generation ultra-high strength steels using combining method of synchrotron X-ray and finite element simulation, and its extension to inverse problem analysis
同步辐射X射线与有限元模拟相结合的第三代超高强钢损伤机理分析及其反问题分析的推广
  • 批准号:
    20H02484
  • 财政年份:
    2020
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Simultaneous characterization of near-field nanoplasmonic structure and function using super-resolved far-field optics: Solving the Inverse Problem
使用超分辨远场光学同时表征近场纳米等离子体结构和功能:解决反演问题
  • 批准号:
    1808766
  • 财政年份:
    2018
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Standard Grant
Development of high-efficiency calculation method for solving inverse problem and singular value decomposition for each local area in image restoration processing
图像恢复处理中求解逆问题和各局部区域奇异值分解的高效计算方法的开发
  • 批准号:
    18K11351
  • 财政年份:
    2018
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了