Direct numerical solution to the inverse boundary-value problem of elliptic equations by using the adjoint variational method.
使用伴随变分法直接数值求解椭圆方程反边值问题。
基本信息
- 批准号:14540099
- 负责人:
- 金额:$ 1.22万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Inverse boundary-value problem of the Laplacs-Poissoon equation as tipical one of equations of the elliptic type is considered. A new technique for numerical solution of the equation. called high order finite difference method, is developed especially for approximate solution of the problem that is known to be ill-posed in the sense of Hadamard. This new numerical technique belongs to the class of quasi-spectral methods, allowing any number of grid points distributed arbitrarily over the domain of interest with its boundary included. The technique is based on the interpolation using exponential functions as approximating base functions. We can expect extremely high accuracy of the order of about several tens to the technique. However, as the order of accuracy increases, the conditioning of the linear system of equations to be solved gets worse. Therefore a special attention should be paid to numerical implementation of the technique on computers. We employ the extended floating point library, developed by Dr.Fujiwara of the Kyoto University, as a remedy against rounding errors in the numerical treatment of the ill-conditioned linear system. Two hundreds decimal digits are used in practice.The adjoint variational method is extensively applied to the coefficient identification problem of equations of the hyperbolic type. The scalar wave equation and the dynamic Navies equations in elasticity are considered. A reconstruction algorithm is developed for identification of Lame constants in linear elastic wave field from displacements and surface traction observed on the boundary. The algorithm has a nature of iterative procedure, in which the cost function is to be minimized by using the gradient of the sum of related functional and a penalty function. The method is shown to be more effective relative to the conventional identification methods through numerical experiments.
考虑到椭圆类型的方程之一,拉普拉克斯 - 散光方程的逆边界值问题。方程数值解的新技术。称为高阶有限差异方法,特别是为了近似于哈达玛德(Hadamard)意义上未知的问题的近似解决方案。这项新的数值技术属于准谱方法的类别,允许任意分布在带有其边界的感兴趣域上的任何数量的网格点。该技术基于使用指数函数作为近似基础函数的插值。我们可以期望该技术的数十个数十几个数量的准确性极高。但是,随着准确度的增加,要解决的方程式线性系统的调理变得更糟。因此,应特别注意计算机上该技术的数值实施。我们采用了由京都大学的Fujiwara博士开发的扩展浮点库,作为一种补救措施,反对在不良条件线性系统的数值处理中舍入错误。实践中使用了两百个十进制数字。伴随变异方法广泛应用于双曲线类型方程的系数识别问题。考虑弹性中的标量波方程和动态海军方程。开发了一种重建算法,用于鉴定线性弹性波场中的lame脚常数,从边界上观察到的位移和表面牵引力。该算法具有迭代过程的性质,在该过程中,使用相关功能和惩罚函数的总和的梯度将成本函数最小化。通过数值实验,该方法与常规识别方法相比更有效。
项目成果
期刊论文数量(42)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A numerical computation for inverse boundary value problems by using the adioint method
逆边值问题的adioint法数值计算
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Vincent Blanlceil;Osamu Saeki;Kazuhiro Sakuma;Kazuei Onishi;青木貴史他;大西 和榮
- 通讯作者:大西 和榮
Lattice-free finite difference method for backward heat conduction problems(invited)
向后热传导问题的无格有限差分法(特邀)
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.Iijima;K.Onishi
- 通讯作者:K.Onishi
Inverse boundary value problem for ocean acoustics using point sources
- DOI:10.1002/mma.504
- 发表时间:2004-08
- 期刊:
- 影响因子:2.9
- 作者:Masaru Ikehata;G. Makrakis;G. Nakamura
- 通讯作者:Masaru Ikehata;G. Makrakis;G. Nakamura
Adjoint methods for numerical solution of inverse boundary value and coefficient identification problems.
逆边值和系数识别问题数值求解的伴随方法。
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.Shirota;K.Onishi
- 通讯作者:K.Onishi
Reconstruction of inclusion for the inverse boundary value problem with mixed boundary condition and source term.
混合边界条件和源项的逆边值问题的包含重构。
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Y.Daido;G.Nakamura
- 通讯作者:G.Nakamura
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ONISHI Kazuei其他文献
ONISHI Kazuei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ONISHI Kazuei', 18)}}的其他基金
Development of highly accurate numerical method based on finite differences and its application to ill-posed problems of partial differential equations.
基于有限差分的高精度数值方法的发展及其在偏微分方程不适定问题中的应用。
- 批准号:
18540108 - 财政年份:2006
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical analysis of flows directly associated with environmental problems.
对与环境问题直接相关的流量进行数学分析。
- 批准号:
10640100 - 财政年份:1998
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical analysis of water and air flow in the life and its computer simulation.
生活中水和空气流动的数学分析及其计算机模拟。
- 批准号:
08640305 - 财政年份:1996
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Co-operative Research on Numerical Analysis of Partial Differential Equations Applied to High Technology.
偏微分方程数值分析应用于高科技的合作研究。
- 批准号:
04305013 - 财政年份:1992
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
相似国自然基金
逆散射理论中传输特征值问题的虚拟元方法研究
- 批准号:12301532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
结合资源受限和机会约束的并行机调度问题及其逆优化研究
- 批准号:72371187
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
传导边界条件下逆声波散射问题的唯一性研究
- 批准号:12301542
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
光波经多类粒子集合散射后的统计光学特性及其逆问题研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向电磁场逆问题的高维多目标电磁学优化算法研究
- 批准号:62201021
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of inverse problem analysis for internal damage of materials using data assimilation
利用数据同化开发材料内部损伤反问题分析
- 批准号:
23K17336 - 财政年份:2023
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
The inverse backscattering problem and the inverse fixed angle scattering problem
逆后向散射问题和逆固定角散射问题
- 批准号:
2307800 - 财政年份:2023
- 资助金额:
$ 1.22万 - 项目类别:
Standard Grant
PRIMES: The Inverse Eigenvalue Problem for Graphs and Collaboration to Promote Inclusivity in Undergraduate Mathematics Education
PRIMES:图的反特征值问题和协作以促进本科数学教育的包容性
- 批准号:
2331072 - 财政年份:2023
- 资助金额:
$ 1.22万 - 项目类别:
Standard Grant
Inverse problem theory for innovation of detection methods
检测方法创新的反问题理论
- 批准号:
23KK0049 - 财政年份:2023
- 资助金额:
$ 1.22万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Combinatorics of neural activity for inferring the structure of neural networks
用于推断神经网络结构的神经活动组合学
- 批准号:
22K03545 - 财政年份:2022
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)