RUI: Research in O-minimality and Related Topics
RUI:O-极小性及相关主题的研究
基本信息
- 批准号:9704869
- 负责人:
- 金额:$ 8.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2000-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project involves questions concerning o-minimality and extensions of o-minimality. Some of the problems concerning o-minimality relate to expansions of archetypal o-minimal structures and structures whose domain has as its order type that of the real numbers. Others have as their focus groups definable in o-minimal structures or the development of o-minimal analogues of more sophisticated topological methods and tools. Problems having to do with extensions of o-minimality deal in particular with the notions of weak o-minimality and local o-minimality. A range of natural examples of weakly o-minimal structures is now known and there already is a significant body of results in the subject. It is hoped that local o-minimality may provide a suitable framework for developing some model theory for subanalytic sets. The research described above falls under the heading of model theory, one of the principal subfields of mathematical logic. Model theorists study properties of familiar mathematical structures which can be described by a formal mathematical language such as predicate logic. The distinctive point of view of model theory can provide insights and understanding into such structures that otherwise might not be easily achieved. This project focuses on structures that include and behave in important respects like the ordered field of real numbers, that is, the real numbers together with the polynomial and algebraic functions that are studied in first-year calculus and describe many phenomena. This decade has witnessed significant advances in which model theory has played a crucial role. The results obtained have deepened our understanding of familiar mathematical systems of interest in such diverse areas of the mathematical sciences as the analysis and geometry of real functions, neural nets, and relational database theory.
该项目涉及有关O-极小和O-极小的扩展的问题。与o-极小有关的一些问题涉及原型o-极小结构的展开,以及其定义域具有实数的阶类型的结构。另一些人则以o-极小结构或开发更复杂的拓扑方法和工具的o-极小类似物来定义他们的重点群体。与O-极小的扩张有关的问题特别涉及到弱O-极小和局部O-极小的概念。弱o-极小结构的一系列自然例子现在已为人所知,并且在这个主题中已经有了大量的结果。希望局部o-极小性能够为次解析集的某些模型理论的发展提供一个合适的框架。上述研究属于模型理论,它是数理逻辑的主要分支领域之一。模型理论家研究可用谓词逻辑等形式数学语言描述的常见数学结构的性质。模型理论的独特观点可以提供对此类结构的洞察和理解,否则这些结构可能不容易实现。这个项目专注于包含并表现在重要方面的结构,如实数的有序域,即实数以及在第一年微积分中研究并描述许多现象的多项式和代数函数。这十年见证了巨大的进步,模型理论在其中发挥了关键作用。所获得的结果加深了我们对在数学科学的不同领域中感兴趣的熟悉的数学系统的理解,例如实函数的分析和几何、神经网络和关系数据库理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Steinhorn其他文献
Charles Steinhorn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Steinhorn', 18)}}的其他基金
NSF/CBMS Regional Research Conferences in Mathematics
NSF/CBMS 数学区域研究会议
- 批准号:
1804259 - 财政年份:2018
- 资助金额:
$ 8.22万 - 项目类别:
Standard Grant
Summer STEM Teaching Experiences for Undergraduates from Liberal Arts Institutions
文科院校本科生暑期 STEM 教学体验
- 批准号:
1525691 - 财政年份:2015
- 资助金额:
$ 8.22万 - 项目类别:
Standard Grant
Travel Awards to Attend the Fifteenth Latin American Symposium on Mathematical Logic
参加第十五届拉丁美洲数理逻辑研讨会的旅行奖
- 批准号:
1237389 - 财政年份:2012
- 资助金额:
$ 8.22万 - 项目类别:
Standard Grant
Travel Awards to Attend the Twelfth Asian Logic Conference
参加第十二届亚洲逻辑会议的旅行奖
- 批准号:
1135626 - 财政年份:2011
- 资助金额:
$ 8.22万 - 项目类别:
Standard Grant
Travel Awards to Attend the First International Meeting of the American Mathematical Society and the Sociedad de Matematica de Chile
参加美国数学会和智利数学学会第一届国际会议的旅行奖励
- 批准号:
1048896 - 财政年份:2010
- 资助金额:
$ 8.22万 - 项目类别:
Standard Grant
Vassar Noyce Teacher Scholarship Program
瓦萨·诺伊斯教师奖学金计划
- 批准号:
1035409 - 财政年份:2010
- 资助金额:
$ 8.22万 - 项目类别:
Continuing Grant
Student Travel Awards to Attend Official Meetings and Sponsored Meetings of the ASL
参加 ASL 官方会议和赞助会议的学生旅行奖励
- 批准号:
0826668 - 财政年份:2008
- 资助金额:
$ 8.22万 - 项目类别:
Continuing Grant
Finite and Infinite Model Theory and Applications
有限和无限模型理论及应用
- 批准号:
0801256 - 财政年份:2008
- 资助金额:
$ 8.22万 - 项目类别:
Continuing Grant
Student Travel Awards to Attend the Annual and European Summer Meetings of the ASL
参加 ASL 年度会议和欧洲夏季会议的学生旅行奖
- 批准号:
0300055 - 财政年份:2003
- 资助金额:
$ 8.22万 - 项目类别:
Continuing Grant
RUI: Research in O-minimality and Related Topics
RUI:O-极小性及相关主题的研究
- 批准号:
0070743 - 财政年份:2000
- 资助金额:
$ 8.22万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 8.22万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 8.22万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 8.22万 - 项目类别:
Standard Grant
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
- 批准号:
2314750 - 财政年份:2024
- 资助金额:
$ 8.22万 - 项目类别:
Cooperative Agreement
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
- 批准号:
2315219 - 财政年份:2024
- 资助金额:
$ 8.22万 - 项目类别:
Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335762 - 财政年份:2024
- 资助金额:
$ 8.22万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 8.22万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 8.22万 - 项目类别:
Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
- 批准号:
2336132 - 财政年份:2024
- 资助金额:
$ 8.22万 - 项目类别:
Standard Grant
CyberCorps Scholarship for Service: Building Research-minded Cyber Leaders
CyberCorps 服务奖学金:培养具有研究意识的网络领导者
- 批准号:
2336409 - 财政年份:2024
- 资助金额:
$ 8.22万 - 项目类别:
Continuing Grant














{{item.name}}会员




