RUI: Research in O-minimality and Related Topics
RUI:O-极小性及相关主题的研究
基本信息
- 批准号:0070743
- 负责人:
- 金额:$ 8.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-15 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project deals with questions concerning o-minimality, extensions ofo-minimality, and classes of finite structures. Some of the problems having to do with o-minimality relate to expansions of archetypal o-minimal structures and structures whose domain has as its order type that of the real numbers. Other have as their focus abelian groups definable in o-minimal structures or the development of o-minimal analogues of differential and algebraic topological methods and tools. Problems concerning extensions of o-minimality have to do in particular with weak o-minimality, local o-minimality, and, in analogy with Morley rank, the development of a model theory for ordered structures of finite rank. The third main topic of the project involves classes of finite structures with dimension and measure. This work has as its aim the development of a model theory for classes of finite structures that is in analogy with mainstream model theory for infinite structures. The results obtained to date and the examples that have been found suggest that there is much to be done.The research outlined above concerns model theory, one of the principal subfields of mathematical logic. Model theorists study properties of familiar mathematical structures that can be expressed in a formal mathematical language such as predicate logic. This distinctive point of view can provide insights and understanding into such structures that otherwise might prove elusive. One aspect of this project focuses on structures that include and behave in important ways like the ordered field of real numbers, that is, the real numbers together with the polynomial and algebraic functions that are studied in first-year calculus and describe many phenomena. Model theory has played a key role in many of the significant advances that have been made in the last ten years. These have deepened our understanding of familiar mathematical systems in such diverse areas of the mathematical sciences as the analysis and geometry of real functions, neural nets, and relational database theory. Applications also have been made in economics. A second principal aspect of the project deals with classes of finite structures. Finite structures in general are central to computer science: any database can be construed as a finite structure in the sense in which they are studied in here, and a particular class of finite structures called finite fields are especially important in cryptology.
该项目涉及的问题有关O-极小,扩展ofo-极小,和类的有限结构。与o-极小有关的一些问题涉及原型o-极小结构的扩展,以及其域具有真实的数的序类型的结构。其他人的重点是可在o-极小结构中定义的阿贝尔群或微分和代数拓扑方法和工具的o-极小类似物的开发。有关问题的扩展o-极小必须做特别是与弱o-极小,地方o-极小,并在类比莫利秩,发展一个模型理论的有序结构的有限秩。第三个主要课题的项目涉及类有限结构的尺寸和措施。这项工作的目的是发展一个模型理论类的有限结构,这是在类比与主流模型理论的无限结构。迄今为止所取得的结果和已经发现的例子表明,还有许多工作要做。上述研究概述涉及模型论,数理逻辑的主要子领域之一。模型理论学家研究的是熟悉的数学结构的性质,这些结构可以用形式化的数学语言(如谓词逻辑)来表达。这种独特的观点可以提供对这种结构的见解和理解,否则可能会被证明是难以捉摸的。这个项目的一个方面集中在结构,包括和行为的重要方式一样,有序领域的真实的数字,也就是说,真实的数字连同多项式和代数函数,在第一年的微积分研究,并描述了许多现象。模型理论在过去十年中取得的许多重大进展中发挥了关键作用。这些都加深了我们对熟悉的数学系统在不同领域的数学科学,如分析和几何的真实的功能,神经网络和关系数据库理论的理解。在经济学中也有应用。该项目的第二个主要方面涉及有限结构的类别。有限结构通常是计算机科学的核心:任何数据库都可以被解释为有限结构,在这里研究它们的意义上,一类特殊的有限结构称为有限域,在密码学中特别重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Steinhorn其他文献
Charles Steinhorn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Steinhorn', 18)}}的其他基金
NSF/CBMS Regional Research Conferences in Mathematics
NSF/CBMS 数学区域研究会议
- 批准号:
1804259 - 财政年份:2018
- 资助金额:
$ 8.7万 - 项目类别:
Standard Grant
Summer STEM Teaching Experiences for Undergraduates from Liberal Arts Institutions
文科院校本科生暑期 STEM 教学体验
- 批准号:
1525691 - 财政年份:2015
- 资助金额:
$ 8.7万 - 项目类别:
Standard Grant
Travel Awards to Attend the Fifteenth Latin American Symposium on Mathematical Logic
参加第十五届拉丁美洲数理逻辑研讨会的旅行奖
- 批准号:
1237389 - 财政年份:2012
- 资助金额:
$ 8.7万 - 项目类别:
Standard Grant
Travel Awards to Attend the Twelfth Asian Logic Conference
参加第十二届亚洲逻辑会议的旅行奖
- 批准号:
1135626 - 财政年份:2011
- 资助金额:
$ 8.7万 - 项目类别:
Standard Grant
Travel Awards to Attend the First International Meeting of the American Mathematical Society and the Sociedad de Matematica de Chile
参加美国数学会和智利数学学会第一届国际会议的旅行奖励
- 批准号:
1048896 - 财政年份:2010
- 资助金额:
$ 8.7万 - 项目类别:
Standard Grant
Vassar Noyce Teacher Scholarship Program
瓦萨·诺伊斯教师奖学金计划
- 批准号:
1035409 - 财政年份:2010
- 资助金额:
$ 8.7万 - 项目类别:
Continuing Grant
Student Travel Awards to Attend Official Meetings and Sponsored Meetings of the ASL
参加 ASL 官方会议和赞助会议的学生旅行奖励
- 批准号:
0826668 - 财政年份:2008
- 资助金额:
$ 8.7万 - 项目类别:
Continuing Grant
Finite and Infinite Model Theory and Applications
有限和无限模型理论及应用
- 批准号:
0801256 - 财政年份:2008
- 资助金额:
$ 8.7万 - 项目类别:
Continuing Grant
Student Travel Awards to Attend the Annual and European Summer Meetings of the ASL
参加 ASL 年度会议和欧洲夏季会议的学生旅行奖
- 批准号:
0300055 - 财政年份:2003
- 资助金额:
$ 8.7万 - 项目类别:
Continuing Grant
RUI: Research in O-minimality and Related Topics
RUI:O-极小性及相关主题的研究
- 批准号:
9704869 - 财政年份:1997
- 资助金额:
$ 8.7万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 8.7万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 8.7万 - 项目类别:
Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 8.7万 - 项目类别:
Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
- 批准号:
502555 - 财政年份:2024
- 资助金额:
$ 8.7万 - 项目类别:
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
- 批准号:
DE240100161 - 财政年份:2024
- 资助金额:
$ 8.7万 - 项目类别:
Discovery Early Career Researcher Award
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
- 批准号:
2902365 - 财政年份:2024
- 资助金额:
$ 8.7万 - 项目类别:
Studentship
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
- 批准号:
EP/Y031962/1 - 财政年份:2024
- 资助金额:
$ 8.7万 - 项目类别:
Research Grant
FCEO-UKRI Senior Research Fellowship - conflict
FCEO-UKRI 高级研究奖学金 - 冲突
- 批准号:
EP/Y033124/1 - 财政年份:2024
- 资助金额:
$ 8.7万 - 项目类别:
Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
- 批准号:
EP/Y033183/1 - 财政年份:2024
- 资助金额:
$ 8.7万 - 项目类别:
Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
- 批准号:
NE/Y005457/1 - 财政年份:2024
- 资助金额:
$ 8.7万 - 项目类别:
Training Grant