Heirarchical Basis Multigrid/ILU Algorithms for Solving Finite Element Equations
用于求解有限元方程的分层基础多重网格/ILU 算法
基本信息
- 批准号:9706090
- 负责人:
- 金额:$ 17.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-08-01 至 2001-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9706090 Bank Hierarchical Basis Multigrid/ILU Algorithms for Solving Finite Element Equations Randolph E. Bank Department of Mathematics University of California at San Diego La Jolla, CA 92093 This proposal has two main components. First, we will study algebraic hierarchical basis multigrid algorithms (HBMG/ILU). These methods solve sparse sets of linear equations arising from finite difference, finite volume and finite element discretizations of partial differential equations. They are differentiated from classical HBMG and MG methods in that they do not require a coarse grid and sequence of mesh refinements. This allows application to problems with geometrically complex domains that require many elements just for the geometric definition, and problems where the adaptivity comes from moving the mesh points rather than from refinement. Preliminary numerical experiments indicate that the methods are potentially very powerful and robust. The second component of the of proposal concerns the continuing software development of the finite element program PLTMG. Various versions of this program have been in the public domain since the late 1970's, and it is widely used in education and research environments. PLTMG solves scalar, parameter dependent, nonlinear elliptic PDE's in general regions of the plane. The principle features are adaptive mesh generation, a posteriori error estimation, HBMG (soon to be HBMG/ILU) iteration for linear systems of equations, Newton's method for nonlinearities, and continuation for parameter dependencies. The code also includes an initial mesh generator, a skeleton generator, and several graphics routines. Although the name PLTMG has remained the same, typically 80% or more of the package is revised with each new release. In many systems modeled by partial differential equations, the critical phenomena occur only in a small part of the physical domain, and may move as a function of time ( e.g. as a flame front). Even with the great advances in hardware, it is not adequate to address difficult grand-challenge class problems of this type using software based on simple uniform meshes; the demands of the problem require that computing resources be focused on the regions of most interest. The motivation for adaptive mesh algorithms is that the algorithm itself can and should identify these critical regions and respond with an appropriate mesh with little or no human intervention. The ``brains'' of adaptive algorithms are a posterior error indicators, which both estimate the current error, and indicate where additional resources should be focused. The very nonuniform and unstructured meshes resulting from adaptive algorithms require sophisticated methods, such as multigrid or the proposed HBMG/ILU, to efficiently and reliably solve the resulting systems of equations. Overall, this field provides a mosaic of important and interrelated scientific questions ranging from difficult problems in mathematical analysis to difficult computational challenges in implementing these procedures on modern computer architectures.
9706090解有限元方程的Bank分层基多重网格/ILU算法Randolph E.加州大学圣迭戈分校数学系,CA 92093这项建议有两个主要部分。首先,我们将研究代数分层基多重网格算法(HBMG/ILU)。这些方法求解由偏微分方程组的有限差分、有限体积和有限元离散所产生的稀疏线性方程组。它们不同于经典的HBMG和MG方法,因为它们不需要粗网格和网格细化序列。这允许应用于具有几何复杂区域的问题,该问题仅需要用于几何定义的许多元素,以及其中自适应来自移动网格点而不是来自精化的问题。初步的数值实验表明,该方法具有很强的计算能力和较强的鲁棒性。建议的第二部分涉及有限元程序PLTMG的持续软件开发。自20世纪70年代末S以来,该程序的各种版本一直处于公共领域,并在教育和研究环境中广泛使用。PLTMG求解平面上一般区域的标量、参数相关的非线性椭圆型偏微分方程组。其主要特点是自适应网格生成,后验误差估计,线性方程组的HBMG(即将成为HBMG/ILU)迭代,非线性的牛顿方法,以及参数依赖的连续性。该代码还包括初始网格生成器、骨架生成器和几个图形例程。尽管PLTMG的名称保持不变,但通常每个新版本都会修改包中80%或更多的内容。在许多用偏微分方程建模的系统中,临界现象只出现在物理域的一小部分,并且可能作为时间的函数移动(例如,作为火焰锋面)。即使硬件有了很大的进步,使用基于简单统一网格的软件来解决这类困难的大挑战类问题也是不够的;问题的要求要求计算资源集中在最感兴趣的区域上。自适应网格算法的动机是,算法本身能够而且应该识别这些关键区域,并在很少或根本没有人工干预的情况下使用适当的网格进行响应。自适应算法的“大脑”是一个后验误差指示器,它既估计当前的误差,又指示应该将额外的资源集中在哪里。由自适应算法产生的非常不均匀和非结构化的网格需要复杂的方法,如多重网格或建议的HBMG/ILU,以高效和可靠地求解所产生的方程组。总体而言,该领域提供了一系列重要且相互关联的科学问题,从数学分析中的困难问题到在现代计算机体系结构上实施这些过程的困难计算挑战。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Randolph Bank其他文献
Randolph Bank的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Randolph Bank', 18)}}的其他基金
RTG: An Interdisciplinary Research Training Program in Applied Mathematics, Computational Science, and Mathematical Physics
RTG:应用数学、计算科学和数学物理的跨学科研究培训项目
- 批准号:
1345013 - 财政年份:2014
- 资助金额:
$ 17.4万 - 项目类别:
Continuing Grant
Twentieth International Conference on Domain Decomposition Methods
第二十届领域分解方法国际会议
- 批准号:
1035227 - 财政年份:2010
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
Scalable Parallel Multilevel Algorithms for the Solution and Optimization of Partial Differential Equations
用于偏微分方程求解和优化的可扩展并行多级算法
- 批准号:
9973276 - 财政年份:1999
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
相似国自然基金
基于Volatility Basis-set方法对上海大气二次有机气溶胶生成的模拟
- 批准号:41105102
- 批准年份:2011
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
求解Basis Pursuit问题的数值优化方法
- 批准号:11001128
- 批准年份:2010
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
An Investigation of the Physiological Basis of Curiosity in Young Children and Adults
幼儿和成人好奇心生理基础的调查
- 批准号:
ES/Y007611/1 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Fellowship
The molecular basis of T cell receptor cross-reactivity between MHC and MR1
MHC 和 MR1 之间 T 细胞受体交叉反应的分子基础
- 批准号:
DP240102905 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Discovery Projects
Understanding the neural basis of hearing function and dysfunction in vivo.
了解体内听力功能和功能障碍的神经基础。
- 批准号:
BB/Y000374/1 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Research Grant
Defining the molecular basis of chloroplast transcription of photosynthetic genes
定义光合基因叶绿体转录的分子基础
- 批准号:
BB/Y003802/1 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Research Grant
The mechanistic basis of slow-fast phenotypic diversity and its functional and evolutionary significance in social groups
慢-快表型多样性的机制基础及其在社会群体中的功能和进化意义
- 批准号:
2241230 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
The molecular basis of viral tolerance in bats
蝙蝠病毒耐受的分子基础
- 批准号:
BB/Y003772/1 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Research Grant
The molecular basis of viral tolerance in bats
蝙蝠病毒耐受的分子基础
- 批准号:
BB/Y005473/1 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Research Grant
Investigating the molecular basis of basement membrane specialisation and basal surface organisation during epithelial tissue development
研究上皮组织发育过程中基底膜特化和基底表面组织的分子基础
- 批准号:
MR/Y012089/1 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Research Grant
Conference: New horizons in language science: large language models, language structure, and the neural basis of language
会议:语言科学的新视野:大语言模型、语言结构和语言的神经基础
- 批准号:
2418125 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
Trustworthy Distributed Brain-inspired Systems: Theoretical Basis and Hardware Implementation
值得信赖的分布式类脑系统:理论基础和硬件实现
- 批准号:
EP/Y03631X/1 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Research Grant