Regularity, Convergence, and Uniqueness Problems for Harmonic Map Flows
调和映射流的正则性、收敛性和唯一性问题
基本信息
- 批准号:9706855
- 负责人:
- 金额:$ 3.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-08-01 至 1999-11-17
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9706855 Wang Work on this project concerns several analytic problems arising from the area of geometric variational calculus: weakly harmonic maps, weak flows of harmonic maps into general Riemannian manifolds, p-harmonic maps. Smoothness of solutions to such problems often breaks down. Of particular interest are the partial regularity and uniqueness of weak flows of harmonic maps in suitable classes, sequential compactness of the solution space including weakly harmonic maps and weak flows of harmonic maps, relationships between flows of Ginzburg-Landau type and harmonic maps, behavior of solutions near singular points, and existence and geometric properties of self-similar solutions to harmonic map flows. This work will involve geometric measure theory and PDE methods in geometric fashion. The PI also proposes to formulate heat flow of harmonic maps between Alexandrov spaces. Partial differential equations are the basic tools to describe physical problems. Harmonic maps model extremal (or optimal) objects with respect to physically natural energy functionals in families of objects satisfying common constraints. The heat flow of harmonic maps studies the long-time dynamical behavior of objects in such families. The study will enhance our understanding of these maps, improve methods to control the singular sets, and predict singular behavior of solutions to these problems. The results will have applications to material science including liquid crystals and elasticity/plasticity.
9706855 王 这个项目的工作涉及到几个分析问题, 从几何变分领域:弱 调和映射,调和映射的弱流到一般 黎曼流形p-调和映射解决方案的光滑度 这样的问题经常会出故障。特别感兴趣的是 调和映射弱流的部分正则性和唯一性 在适当的类中,解空间的序列紧性 包括弱调和映射和调和映射的弱流,Ginzburg-Landau型流和 调和映射,奇点附近解的行为,自相似解的存在性和几何性质, 谐波映射流。这项工作将涉及几何测量 理论和偏微分方程方法的几何时尚。PI还建议 导出亚历山德罗夫空间间调和映射的热流。 偏微分方程是描述 身体问题。调和映射模型极值(或最优) 对象相对于满足共同约束的对象族中的物理自然能量泛函。调和映射的热流研究这类族中物体的长时间动力学行为。 这项研究将加强我们的 理解这些映射,改进控制奇异集的方法,并预测这些问题的解的奇异行为。研究结果将在包括液晶和弹性/塑性的材料科学中得到应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Changyou Wang其他文献
Subelliptic harmonic maps from Carnot groups
- DOI:
10.1007/s00526-002-0184-7 - 发表时间:
2003-09 - 期刊:
- 影响因子:2.1
- 作者:
Changyou Wang - 通讯作者:
Changyou Wang
Existence and stability of periodic solutions for parabolic systems with time delays
- DOI:
10.1016/j.jmaa.2007.07.082 - 发表时间:
2008-03 - 期刊:
- 影响因子:1.3
- 作者:
Changyou Wang - 通讯作者:
Changyou Wang
A compactness theorem of n-harmonic maps Un théorème de compacité pour applications n-harmoniques
N 调和映射的紧性定理 Un théorème de compacité pour n-harmoniques 应用
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Changyou Wang - 通讯作者:
Changyou Wang
Remarks on biharmonic maps into spheres
- DOI:
10.1007/s00526-003-0252-7 - 发表时间:
2004-11 - 期刊:
- 影响因子:2.1
- 作者:
Changyou Wang - 通讯作者:
Changyou Wang
On the periodicity of a max-type rational difference equation
关于max型有理差分方程的周期性
- DOI:
10.22436/jnsa.010.09.08 - 发表时间:
2017-09 - 期刊:
- 影响因子:0
- 作者:
Changyou Wang;Xiaotong Jing;Xiaohong Hu;Rui Li - 通讯作者:
Rui Li
Changyou Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Changyou Wang', 18)}}的其他基金
Variational Analysis and Hydrodynamics of Liquid Crystals
液晶的变分分析和流体动力学
- 批准号:
2101224 - 财政年份:2021
- 资助金额:
$ 3.52万 - 项目类别:
Standard Grant
Mathematical Analysis of Nematic Liquid Crystals and L-infinity Variational Problems
向列液晶与L-无穷变分问题的数学分析
- 批准号:
1764417 - 财政年份:2018
- 资助金额:
$ 3.52万 - 项目类别:
Continuing Grant
Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
- 批准号:
1522869 - 财政年份:2014
- 资助金额:
$ 3.52万 - 项目类别:
Continuing Grant
Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
- 批准号:
1265574 - 财政年份:2013
- 资助金额:
$ 3.52万 - 项目类别:
Continuing Grant
Conference on recent development in L-infinity variational problems and the associated nonlinear partial differential equations
L-无穷变分问题及相关非线性偏微分方程最新发展会议
- 批准号:
1103165 - 财政年份:2011
- 资助金额:
$ 3.52万 - 项目类别:
Standard Grant
Analysis of some L-infinity variational problems and Aronsson's equation, Ericksen-Leslie system modeling hydrodynamic flow of liquid crystals
一些 L-无穷变分问题和 Aronsson 方程、Ericksen-Leslie 系统模拟液晶流体动力流动的分析
- 批准号:
1001115 - 财政年份:2010
- 资助金额:
$ 3.52万 - 项目类别:
Standard Grant
Collaborative Research: L-infinity variational problems and the Aronsson equation
合作研究:L-无穷变分问题和阿伦森方程
- 批准号:
0601162 - 财政年份:2006
- 资助金额:
$ 3.52万 - 项目类别:
Standard Grant
Calculus of Variations in L-infinity, Fully Nonlinear Subelliptic Equations on Carnot Groups, Analysis of Biharmonic Maps and Harmonic Maps
L-无穷变分微积分、卡诺群上的完全非线性次椭圆方程、双调和映射和调和映射分析
- 批准号:
0400718 - 财政年份:2004
- 资助金额:
$ 3.52万 - 项目类别:
Standard Grant
Some Problems for Bi-Harmonic Maps, Blow-Up Analysis for Some Variational Problems
双调和映射的一些问题,一些变分问题的放大分析
- 批准号:
9970549 - 财政年份:1999
- 资助金额:
$ 3.52万 - 项目类别:
Standard Grant
Regularity, Convergence, and Uniqueness Problems for Harmonic Map Flows
调和映射流的正则性、收敛性和唯一性问题
- 批准号:
0096062 - 财政年份:1999
- 资助金额:
$ 3.52万 - 项目类别:
Standard Grant
相似海外基金
NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
- 批准号:
2343806 - 财政年份:2024
- 资助金额:
$ 3.52万 - 项目类别:
Standard Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
- 批准号:
2344109 - 财政年份:2024
- 资助金额:
$ 3.52万 - 项目类别:
Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
- 批准号:
2344284 - 财政年份:2024
- 资助金额:
$ 3.52万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
- 批准号:
2344472 - 财政年份:2024
- 资助金额:
$ 3.52万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
$ 3.52万 - 项目类别:
Standard Grant
Collaborative Research: Intertropical Convergence Zone Variations from Stable Oxygen Isotope Tree-ring Records in the Tropical Americas
合作研究:热带美洲稳定氧同位素树轮记录的热带辐合带变化
- 批准号:
2303525 - 财政年份:2024
- 资助金额:
$ 3.52万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
- 批准号:
2344256 - 财政年份:2024
- 资助金额:
$ 3.52万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
- 批准号:
2344357 - 财政年份:2024
- 资助金额:
$ 3.52万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
- 批准号:
2344305 - 财政年份:2024
- 资助金额:
$ 3.52万 - 项目类别:
Standard Grant
NSF Convergence Accelerator (L): Innovative approach to monitor methane emissions from livestock using an advanced gravimetric microsensor.
NSF Convergence Accelerator (L):使用先进的重力微传感器监测牲畜甲烷排放的创新方法。
- 批准号:
2344426 - 财政年份:2024
- 资助金额:
$ 3.52万 - 项目类别:
Standard Grant