Some Problems for Bi-Harmonic Maps, Blow-Up Analysis for Some Variational Problems
双调和映射的一些问题,一些变分问题的放大分析
基本信息
- 批准号:9970549
- 负责人:
- 金额:$ 5.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-08-01 至 1999-10-20
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Award: DMS-9970549Principal Investigator: Changyou WangWorks on this project concerns several analytic problems arisingfrom the area of geometric variational calculus. It containsthree parts. In the first part, we try to study problems relatedto critical points (or bi-harmonic maps) for Hessian energyfunctionals of maps between manifolds, such as partial regularityfor minimizing bi-harmonic maps, existence of bi-harmonic maprepresentations among homotopy classes from four dimensionalmanifolds, and heat evolutions of bi-harmonic maps from fourdimensional domains. In the second part, we try to developblow-up analysis for flows of stationary harmonic maps, flows ofGinzburg-Landau systems, stable-stationary harmonic maps, andenergy concentrations and bubbling phenomena for entire solutionsto harmonic maps in three dimensional Euclidean space. Here wetry to use geometric measure theory and PDE to understand thedefect measures associated with these objects. In the last part,the PI propose to study lower bound for p-energy and itsapplications to possible dynamics of singularity for p-harmonicmap flows from two dimensional domains to the circle, as p tendsto two. We hope to build connections to vortex dynamics ofcomplex Ginzburg-Landau equations in two dimension.Nonlinear partial differential equations are basic tools todescribe problems arising from both differential geometry andphysics. Harmonic maps model optimal objects with respect tophysically natural energy functionals in families of objectssatisfying common constraints. Heat flows of harmonic maps studythe long-time dynamical behavior of objects in such families. Thestudy will enhance our understanding of these maps, improvemethods to control the singular sets, and predict singularbehavior of solutions to these problems. Bi-harmonic maps arenatural in the study of both fourth order nonlinear PDE andhigher dimensional conformal geometry. Results here will havepotential applications to differential geometry, material scienceincluding liquid crystals, elasticity/plasticity, and fluidmechanics.
项目负责人:王畅游本项目研究内容涉及几何变分微积分领域中出现的几个解析问题。它包含三个部分。在第一部分中,我们尝试研究流形间映射的Hessian能量泛函的临界点(或双调和映射)的相关问题,例如最小化双调和映射的部分正则性,四维流形同伦类间双调和映射表示的存在性,以及四维域上双调和映射的热演化。在第二部分中,我们尝试对稳态调和图的流动、金兹堡-朗道体系的流动、稳定-平稳调和图以及三维欧几里德空间调和图全解的能量集中和鼓泡现象进行爆破分析。在这里,我们尝试使用几何测量理论和PDE来理解与这些对象相关的缺陷测量。最后,在p趋向于2的情况下,研究p能量的下界及其在p-谐波映射流从二维域到圆的可能的奇点动力学中的应用。我们希望建立二维复杂金兹堡-朗道方程涡旋动力学的联系。非线性偏微分方程是描述微分几何和物理问题的基本工具。调和映射在满足共同约束的目标族中,根据物理上的自然能量泛函对最优目标进行建模。谐波图的热流研究这类物体的长期动力学行为。该研究将增强我们对这些映射的理解,改进控制奇异集的方法,并预测这些问题解的奇异行为。双调和映射在四阶非线性偏微分方程和高维共形几何的研究中都是很自然的。这里的结果将在微分几何、材料科学(包括液晶)、弹性/塑性和流体力学方面有潜在的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Changyou Wang其他文献
Subelliptic harmonic maps from Carnot groups
- DOI:
10.1007/s00526-002-0184-7 - 发表时间:
2003-09 - 期刊:
- 影响因子:2.1
- 作者:
Changyou Wang - 通讯作者:
Changyou Wang
Existence and stability of periodic solutions for parabolic systems with time delays
- DOI:
10.1016/j.jmaa.2007.07.082 - 发表时间:
2008-03 - 期刊:
- 影响因子:1.3
- 作者:
Changyou Wang - 通讯作者:
Changyou Wang
A compactness theorem of n-harmonic maps Un théorème de compacité pour applications n-harmoniques
N 调和映射的紧性定理 Un théorème de compacité pour n-harmoniques 应用
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Changyou Wang - 通讯作者:
Changyou Wang
Experimental Studies of Crevice Corrosion of Buried Pipeline with Disbonded Coatings under Cathodic protection
阴极保护下埋地管道剥离涂层缝隙腐蚀实验研究
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:3.5
- 作者:
Wenhe Wang;Qing sheng Wang;Changyou Wang;Jun Yi - 通讯作者:
Jun Yi
On the periodicity of a max-type rational difference equation
关于max型有理差分方程的周期性
- DOI:
10.22436/jnsa.010.09.08 - 发表时间:
2017-09 - 期刊:
- 影响因子:0
- 作者:
Changyou Wang;Xiaotong Jing;Xiaohong Hu;Rui Li - 通讯作者:
Rui Li
Changyou Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Changyou Wang', 18)}}的其他基金
Variational Analysis and Hydrodynamics of Liquid Crystals
液晶的变分分析和流体动力学
- 批准号:
2101224 - 财政年份:2021
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
Mathematical Analysis of Nematic Liquid Crystals and L-infinity Variational Problems
向列液晶与L-无穷变分问题的数学分析
- 批准号:
1764417 - 财政年份:2018
- 资助金额:
$ 5.81万 - 项目类别:
Continuing Grant
Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
- 批准号:
1522869 - 财政年份:2014
- 资助金额:
$ 5.81万 - 项目类别:
Continuing Grant
Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
- 批准号:
1265574 - 财政年份:2013
- 资助金额:
$ 5.81万 - 项目类别:
Continuing Grant
Conference on recent development in L-infinity variational problems and the associated nonlinear partial differential equations
L-无穷变分问题及相关非线性偏微分方程最新发展会议
- 批准号:
1103165 - 财政年份:2011
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
Analysis of some L-infinity variational problems and Aronsson's equation, Ericksen-Leslie system modeling hydrodynamic flow of liquid crystals
一些 L-无穷变分问题和 Aronsson 方程、Ericksen-Leslie 系统模拟液晶流体动力流动的分析
- 批准号:
1001115 - 财政年份:2010
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
Collaborative Research: L-infinity variational problems and the Aronsson equation
合作研究:L-无穷变分问题和阿伦森方程
- 批准号:
0601162 - 财政年份:2006
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
Calculus of Variations in L-infinity, Fully Nonlinear Subelliptic Equations on Carnot Groups, Analysis of Biharmonic Maps and Harmonic Maps
L-无穷变分微积分、卡诺群上的完全非线性次椭圆方程、双调和映射和调和映射分析
- 批准号:
0400718 - 财政年份:2004
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
Regularity, Convergence, and Uniqueness Problems for Harmonic Map Flows
调和映射流的正则性、收敛性和唯一性问题
- 批准号:
0096062 - 财政年份:1999
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
Some Problems for Bi-Harmonic Maps, Blow-Up Analysis for Some Variational Problems
双调和映射的一些问题,一些变分问题的放大分析
- 批准号:
0096030 - 财政年份:1999
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
相似海外基金
Understanding the role of trauma in alcohol and other drug-related problems
了解创伤在酒精和其他毒品相关问题中的作用
- 批准号:
DP240101473 - 财政年份:2024
- 资助金额:
$ 5.81万 - 项目类别:
Discovery Projects
Organic Bionics: Soft Materials to Solve Hard Problems in Neuroengineering
有机仿生学:解决神经工程难题的软材料
- 批准号:
FT230100154 - 财政年份:2024
- 资助金额:
$ 5.81万 - 项目类别:
ARC Future Fellowships
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
CRII: AF: Streaming Approximability of Maximum Directed Cut and other Constraint Satisfaction Problems
CRII:AF:最大定向切割和其他约束满足问题的流近似性
- 批准号:
2348475 - 财政年份:2024
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
Duration models related problems in econometrics
计量经济学中的持续时间模型相关问题
- 批准号:
23K25504 - 财政年份:2024
- 资助金额:
$ 5.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
- 批准号:
2400014 - 财政年份:2024
- 资助金额:
$ 5.81万 - 项目类别:
Standard Grant
REU Site: Applied Mathematics in Real World Problems
REU 网站:现实世界问题中的应用数学
- 批准号:
2349382 - 财政年份:2024
- 资助金额:
$ 5.81万 - 项目类别:
Continuing Grant