Analysis of some L-infinity variational problems and Aronsson's equation, Ericksen-Leslie system modeling hydrodynamic flow of liquid crystals
一些 L-无穷变分问题和 Aronsson 方程、Ericksen-Leslie 系统模拟液晶流体动力流动的分析
基本信息
- 批准号:1001115
- 负责人:
- 金额:$ 14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-01 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to advance the principal investigator's research on the analytic issues arising from two areas: (i) the L-infinity variational problem and the associated Aronsson equation, and (ii) the hydrodynamic flow of nematic liquid crystal materials. L-infinity variational problems study the minimization problem of appropriate cost functionals that are suprema of integrand functions. The area has become very active recently. Particular foci of the first part of the project are the following: to identify the most general conditions guaranteeing that the equivalence relationship between absolute minimizers of quasi-convex Hamiltonian functionals and viscosity solutions to the highly degenerate Aronsson equation holds; to explore uniqueness issues for general Aronsson equations with spatial dependence; to study the homogenization problem for L-infinity variational problems in the framework of gamma convergence; and to investigate L-infinity variational problems under Dirichlet energy constraints.The second part of this project deals with the Ericksen-Leslie system modeling hydrodynamic flows of nematic liquid crystals. This is a strongly coupled system relating the incompressible Navier-Stokes equation of the underlying fluid velocity field and the transported heat flow of harmonic maps for the director field of the nematic liquid crystal materials. The objective is to establish both existence and partial regularity for Leray-Hopf-type weak solutions in dimension three.The proposed problems not only are mathematically important but also have potential applications to other fields of mathematics, applied science, and materials engineering. The nonlinear partial differential equations or systems involved in the project either are highly degenerate elliptic problems or equations with super-critical nonlinearities whose resolutions will definitely contribute new ideas and techniques that will be useful in a variety of contexts. So-called L-infinity variational problems arise in a number of different areas such as the determination of optimal radiation treatments in chemotherapy, image analysis and recovery engineering, and the design of winning strategies in certain types of random games. In mechanical engineering, the Ericksen-Leslie system is among the most fundamental equations used to describe the dynamics of viscoelastic fluids, including nematic liquid crystals. Rigorous analysis of both the existence and the regularity of various solutions to such a system can predict the formation of singularities, allow researchers to gain insight into turbulent phenomena, and justify both computational and experimental studies made by applied scientists and engineers. This project will result in the publication of monographs and lecture notes, involve active training of advanced graduate students, and include the organization of specific conferences or workshops.
该项目的目标是推进主要研究者对两个领域所产生的分析问题的研究:(i)L-无穷变分问题和相关的Aronsson方程,以及(ii)液晶材料的流体动力学流动。L-无穷变分问题研究的是被积函数的上确界的适当代价泛函的极小化问题。这个地区最近变得非常活跃。该项目的第一部分的重点是:确定保证拟凸Hamilton泛函的绝对极小值与高度退化Aronsson方程的粘性解之间的等价关系成立的最一般条件;探索具有空间依赖性的一般Aronsson方程的唯一性问题;在Gamma收敛的框架下研究L-无穷变分问题的均匀化问题;并研究Dirichlet能量约束下的L-无穷变分问题。本项目的第二部分涉及Ericksen-Leslie系统模拟双折射液晶的流体动力学流动。这是一个强耦合的系统,涉及不可压缩的Navier-Stokes方程的底层流体速度场和传输的热流谐波映射的指向矢场的液晶材料。目的是建立三维Leray-Hopf型弱解的存在性和部分正则性,所提出的问题不仅在数学上很重要,而且在数学、应用科学和材料工程等领域也有潜在的应用.该项目中涉及的非线性偏微分方程或系统要么是高度退化的椭圆问题,要么是具有超临界非线性的方程,其解决方案肯定会带来新的想法和技术,这些想法和技术在各种情况下都是有用的。所谓的L-无穷变分问题出现在许多不同的领域,如确定化疗,图像分析和恢复工程中的最佳放射治疗,以及在某些类型的随机游戏中获胜策略的设计。在机械工程中,Ericksen-Leslie系统是用来描述粘弹性流体动力学的最基本方程之一,包括粘弹性液晶。严格分析这种系统的各种解的存在性和规律性可以预测奇点的形成,使研究人员能够深入了解湍流现象,并证明应用科学家和工程师所做的计算和实验研究。该项目将导致出版专著和讲义,涉及对高级研究生的积极培训,并包括组织具体的会议或讲习班。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Changyou Wang其他文献
Subelliptic harmonic maps from Carnot groups
- DOI:
10.1007/s00526-002-0184-7 - 发表时间:
2003-09 - 期刊:
- 影响因子:2.1
- 作者:
Changyou Wang - 通讯作者:
Changyou Wang
Existence and stability of periodic solutions for parabolic systems with time delays
- DOI:
10.1016/j.jmaa.2007.07.082 - 发表时间:
2008-03 - 期刊:
- 影响因子:1.3
- 作者:
Changyou Wang - 通讯作者:
Changyou Wang
A compactness theorem of n-harmonic maps Un théorème de compacité pour applications n-harmoniques
N 调和映射的紧性定理 Un théorème de compacité pour n-harmoniques 应用
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Changyou Wang - 通讯作者:
Changyou Wang
Experimental Studies of Crevice Corrosion of Buried Pipeline with Disbonded Coatings under Cathodic protection
阴极保护下埋地管道剥离涂层缝隙腐蚀实验研究
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:3.5
- 作者:
Wenhe Wang;Qing sheng Wang;Changyou Wang;Jun Yi - 通讯作者:
Jun Yi
On the periodicity of a max-type rational difference equation
关于max型有理差分方程的周期性
- DOI:
10.22436/jnsa.010.09.08 - 发表时间:
2017-09 - 期刊:
- 影响因子:0
- 作者:
Changyou Wang;Xiaotong Jing;Xiaohong Hu;Rui Li - 通讯作者:
Rui Li
Changyou Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Changyou Wang', 18)}}的其他基金
Variational Analysis and Hydrodynamics of Liquid Crystals
液晶的变分分析和流体动力学
- 批准号:
2101224 - 财政年份:2021
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Mathematical Analysis of Nematic Liquid Crystals and L-infinity Variational Problems
向列液晶与L-无穷变分问题的数学分析
- 批准号:
1764417 - 财政年份:2018
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
- 批准号:
1522869 - 财政年份:2014
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
- 批准号:
1265574 - 财政年份:2013
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
Conference on recent development in L-infinity variational problems and the associated nonlinear partial differential equations
L-无穷变分问题及相关非线性偏微分方程最新发展会议
- 批准号:
1103165 - 财政年份:2011
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: L-infinity variational problems and the Aronsson equation
合作研究:L-无穷变分问题和阿伦森方程
- 批准号:
0601162 - 财政年份:2006
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Calculus of Variations in L-infinity, Fully Nonlinear Subelliptic Equations on Carnot Groups, Analysis of Biharmonic Maps and Harmonic Maps
L-无穷变分微积分、卡诺群上的完全非线性次椭圆方程、双调和映射和调和映射分析
- 批准号:
0400718 - 财政年份:2004
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Some Problems for Bi-Harmonic Maps, Blow-Up Analysis for Some Variational Problems
双调和映射的一些问题,一些变分问题的放大分析
- 批准号:
9970549 - 财政年份:1999
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Regularity, Convergence, and Uniqueness Problems for Harmonic Map Flows
调和映射流的正则性、收敛性和唯一性问题
- 批准号:
0096062 - 财政年份:1999
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Some Problems for Bi-Harmonic Maps, Blow-Up Analysis for Some Variational Problems
双调和映射的一些问题,一些变分问题的放大分析
- 批准号:
0096030 - 财政年份:1999
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
相似海外基金
Convergent evolution of placental villi in primates and ungulates: Are some placentas more efficient than others?
灵长类动物和有蹄类动物胎盘绒毛的趋同进化:某些胎盘是否比其他胎盘更有效?
- 批准号:
BB/Y005953/1 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Research Grant
Some like it hot: the genetics of rapid adaptation to climate change
有些人喜欢热:快速适应气候变化的遗传学
- 批准号:
DP240102637 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Discovery Projects
Why do some types of biotic change produce predictable ecological, evolutionary and life history strategy change?
为什么某些类型的生物变化会产生可预测的生态、进化和生活史策略变化?
- 批准号:
EP/Y029720/1 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Research Grant
Some topics in Analysis and Probability in Metric Measure Spaces, Random Matrices, and Diffusions
度量测度空间、随机矩阵和扩散中的分析和概率中的一些主题
- 批准号:
2247117 - 财政年份:2023
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Are some gene regulatory networks more evolvable than others?
某些基因调控网络是否比其他基因调控网络更具进化性?
- 批准号:
2885482 - 财政年份:2023
- 资助金额:
$ 14万 - 项目类别:
Studentship
Some Algorithmic Questions Related to the Mordell Conjecture
与莫德尔猜想相关的一些算法问题
- 批准号:
2313466 - 财政年份:2023
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
LEAPS-MPS: Some Applications of Free Probability and Random Matrix Theory
LEAPS-MPS:自由概率和随机矩阵理论的一些应用
- 批准号:
2316836 - 财政年份:2023
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Intertwining ideas for some problems in probability
一些概率问题的相互交织的想法
- 批准号:
2246766 - 财政年份:2023
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Some problems on unlikely intersections
不太可能的交叉路口的一些问题
- 批准号:
2906374 - 财政年份:2023
- 资助金额:
$ 14万 - 项目类别:
Studentship