Calculus of Variations in L-infinity, Fully Nonlinear Subelliptic Equations on Carnot Groups, Analysis of Biharmonic Maps and Harmonic Maps
L-无穷变分微积分、卡诺群上的完全非线性次椭圆方程、双调和映射和调和映射分析
基本信息
- 批准号:0400718
- 负责人:
- 金额:$ 7.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal DMS 0400718Title: Calculus of variations in L-infinity, fully nonlinearsubelliptic equations in Carnot groups, analysis of biharmonic andharmonic mapsPI: Changyou Wang, University of KentuckyABSTRACTThe proposal consists of problems in four main areas. In part 1,the PI plans to continue his study on analytic issues of calculusof variations in L-infinity consisting of the relation between absoluteminimizers of L-infinity functionals and viscosity solutions of theirAronsson-Euler equations which are fully nonlinear degenerate pdes,and uniqueness of viscosity of Aronsson-Euler equations. In part 2,based on his recent works on uniqueness of viscosity solutions tothe subelliptic infinity-Laplace equation on Carnot groups, the PIaims to establish the comparison principle for fully nonlinearsubelliptic pdes including subelliptic Isaas-Bellmanequations and horizontal Hessian equations on Carnot-Caratheodory spaces.In part 3, the PI plans to further study partial regularity ofstationary biharmonic maps such as the optimal size and possiblestructures of the singular set of biharmonic maps and the heat flowof biharmonic maps in four dimension and its applications.In part 4, the PI plans to continue his study on weaksequential compactness and energy quantization of harmonic mapsand the heat flows of harmonic maps.The proposed problems lie in the field of nonlinear pdes whichprovide basic laws and play crucial roles in studying problemsfrom analysis, geometry, applied sciences. Variational problems ofsupernorm are not only mathematically important but also ofgreat practical interests. There are many problems from controlmechanisms, risk managements in operation research, extreme valueengineering where one must design for the worst case(e.g. determine a control to minimize the cost functional which is themaximum of a function). On the other hand, since supremum normfunctionals lack strong differentiability and their associated pdesare degenerate fully nonlinear equations, many new techniques must bedeveloped for the study. Underlying many physical phenomena is a leastenergy principle where certain configurations or geometric shape aredistinguished by having less energy or area than competing objects.The nonlinear target constraints often lead to singularities. For example,domain walls in magnetized materials, point, curve, and surfacedefects in various liquid crystal materials, and vortices insuperconductivity. We need to develop new mathematical structuresand theories in order to explain and predict such phenomena. Theproposed study on harmonic maps and biharmonic maps is certainlymotivated by these considerations. The research findings in thesedirections shall be very important to our knowledge of second (or higher)order nonlinear elliptic systems with borderline nonlinearitiesand many potential applications as well.
提案DMS 0400718题目:L-无穷大变分法,卡诺群中的完全非线性次椭圆方程,双调和映射和调和映射的分析PI:王长友,剑桥大学摘要该提案包括四个主要领域的问题。在第一部分中,PI计划继续研究L-无穷远变分计算的分析问题,包括L-无穷远泛函的绝对极小与其完全非线性退化方程的Aronsson-Euler方程的粘性解之间的关系,以及Aronsson-Euler方程粘性的唯一性。在第二部分中,基于他最近关于Carnot群上的亚椭圆无穷Laplace方程粘性解的唯一性的工作,我们建立了Carnot-Caratheodory空间上的完全非线性亚椭圆方程,包括亚椭圆Isaas-Bellman方程和水平Hessian方程的比较原理。PI计划进一步研究平稳双调和映射的部分正则性,例如双调和映射奇异集的最佳大小和可能结构以及热在第四部分中,PI计划继续研究调和映射的弱序列紧性和能量量子化以及调和映射的热流,所提出的问题属于非线性偏微分方程领域,它为研究分析、几何、应用科学等问题提供了基本规律,起着至关重要的作用。超范数变分问题不仅在数学上很重要,而且具有很大的实际意义。在控制机制、运筹学中的风险管理、极端价值工程等方面存在许多问题,其中必须针对最坏情况进行设计(例如,确定控制以最小化成本泛函,即函数的最大值)。另一方面,由于上确界正规泛函缺乏强可微性,且其所对应的偏微分方程是退化的完全非线性方程,因此需要发展许多新的研究方法。许多物理现象的基础是一个最小能量原理,在这个原理中,某些构型或几何形状的能量或面积比竞争对象小,非线性目标约束常常导致奇异性。例如,磁化材料中的畴壁,各种液晶材料中的点、曲线和表面缺陷,以及超导性中的涡旋。我们需要发展新的数学结构和理论来解释和预测这些现象。调和映射和双调和映射的研究正是出于这些考虑。这些方面的研究成果对我们认识二阶(或更高阶)边界非线性椭圆型方程组及其许多潜在的应用具有重要意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Changyou Wang其他文献
Subelliptic harmonic maps from Carnot groups
- DOI:
10.1007/s00526-002-0184-7 - 发表时间:
2003-09 - 期刊:
- 影响因子:2.1
- 作者:
Changyou Wang - 通讯作者:
Changyou Wang
Existence and stability of periodic solutions for parabolic systems with time delays
- DOI:
10.1016/j.jmaa.2007.07.082 - 发表时间:
2008-03 - 期刊:
- 影响因子:1.3
- 作者:
Changyou Wang - 通讯作者:
Changyou Wang
A compactness theorem of n-harmonic maps Un théorème de compacité pour applications n-harmoniques
N 调和映射的紧性定理 Un théorème de compacité pour n-harmoniques 应用
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Changyou Wang - 通讯作者:
Changyou Wang
Experimental Studies of Crevice Corrosion of Buried Pipeline with Disbonded Coatings under Cathodic protection
阴极保护下埋地管道剥离涂层缝隙腐蚀实验研究
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:3.5
- 作者:
Wenhe Wang;Qing sheng Wang;Changyou Wang;Jun Yi - 通讯作者:
Jun Yi
On the periodicity of a max-type rational difference equation
关于max型有理差分方程的周期性
- DOI:
10.22436/jnsa.010.09.08 - 发表时间:
2017-09 - 期刊:
- 影响因子:0
- 作者:
Changyou Wang;Xiaotong Jing;Xiaohong Hu;Rui Li - 通讯作者:
Rui Li
Changyou Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Changyou Wang', 18)}}的其他基金
Variational Analysis and Hydrodynamics of Liquid Crystals
液晶的变分分析和流体动力学
- 批准号:
2101224 - 财政年份:2021
- 资助金额:
$ 7.23万 - 项目类别:
Standard Grant
Mathematical Analysis of Nematic Liquid Crystals and L-infinity Variational Problems
向列液晶与L-无穷变分问题的数学分析
- 批准号:
1764417 - 财政年份:2018
- 资助金额:
$ 7.23万 - 项目类别:
Continuing Grant
Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
- 批准号:
1522869 - 财政年份:2014
- 资助金额:
$ 7.23万 - 项目类别:
Continuing Grant
Analysis of nematic liquid crystal flows, high dimensional phase-transition, conserved geometric motion, and L-infinity variational problems
向列液晶流、高维相变、守恒几何运动和L-无穷变分问题的分析
- 批准号:
1265574 - 财政年份:2013
- 资助金额:
$ 7.23万 - 项目类别:
Continuing Grant
Conference on recent development in L-infinity variational problems and the associated nonlinear partial differential equations
L-无穷变分问题及相关非线性偏微分方程最新发展会议
- 批准号:
1103165 - 财政年份:2011
- 资助金额:
$ 7.23万 - 项目类别:
Standard Grant
Analysis of some L-infinity variational problems and Aronsson's equation, Ericksen-Leslie system modeling hydrodynamic flow of liquid crystals
一些 L-无穷变分问题和 Aronsson 方程、Ericksen-Leslie 系统模拟液晶流体动力流动的分析
- 批准号:
1001115 - 财政年份:2010
- 资助金额:
$ 7.23万 - 项目类别:
Standard Grant
Collaborative Research: L-infinity variational problems and the Aronsson equation
合作研究:L-无穷变分问题和阿伦森方程
- 批准号:
0601162 - 财政年份:2006
- 资助金额:
$ 7.23万 - 项目类别:
Standard Grant
Some Problems for Bi-Harmonic Maps, Blow-Up Analysis for Some Variational Problems
双调和映射的一些问题,一些变分问题的放大分析
- 批准号:
9970549 - 财政年份:1999
- 资助金额:
$ 7.23万 - 项目类别:
Standard Grant
Regularity, Convergence, and Uniqueness Problems for Harmonic Map Flows
调和映射流的正则性、收敛性和唯一性问题
- 批准号:
0096062 - 财政年份:1999
- 资助金额:
$ 7.23万 - 项目类别:
Standard Grant
Some Problems for Bi-Harmonic Maps, Blow-Up Analysis for Some Variational Problems
双调和映射的一些问题,一些变分问题的放大分析
- 批准号:
0096030 - 财政年份:1999
- 资助金额:
$ 7.23万 - 项目类别:
Standard Grant
相似国自然基金
Autoimmune diseases therapies: variations on the microbiome in rheumatoid arthritis
- 批准号:31171277
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Intertropical Convergence Zone Variations from Stable Oxygen Isotope Tree-ring Records in the Tropical Americas
合作研究:热带美洲稳定氧同位素树轮记录的热带辐合带变化
- 批准号:
2303525 - 财政年份:2024
- 资助金额:
$ 7.23万 - 项目类别:
Standard Grant
Perceptions, practices, autonomy levels and other variations among teachers who use AI teaching tools
使用人工智能教学工具的教师的认知、实践、自主水平和其他差异
- 批准号:
24K16628 - 财政年份:2024
- 资助金额:
$ 7.23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Impact of Genetic Variations on Muscle Physiology During Hominin Evolution
古人类进化过程中遗传变异对肌肉生理学的影响
- 批准号:
24K18206 - 财政年份:2024
- 资助金额:
$ 7.23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Intertropical Convergence Zone Variations from Stable Oxygen Isotope Tree-ring Records in the Tropical Americas
合作研究:热带美洲稳定氧同位素树轮记录的热带辐合带变化
- 批准号:
2303524 - 财政年份:2024
- 资助金额:
$ 7.23万 - 项目类别:
Standard Grant
Collaborative Research: Intertropical Convergence Zone Variations from Stable Oxygen Isotope Tree-ring Records in the Tropical Americas
合作研究:热带美洲稳定氧同位素树轮记录的热带辐合带变化
- 批准号:
2303526 - 财政年份:2024
- 资助金额:
$ 7.23万 - 项目类别:
Standard Grant
Understanding molecular variations of cattle genome by machine learning
通过机器学习了解牛基因组的分子变异
- 批准号:
2868882 - 财政年份:2023
- 资助金额:
$ 7.23万 - 项目类别:
Studentship
Collaborative Research: CEDAR--A Whole-Atmospheric Perspective on Connections between Intra-Seasonal Variations in the Troposphere and Thermosphere
合作研究:CEDAR——对流层和热层季节内变化之间联系的整体大气视角
- 批准号:
2332817 - 财政年份:2023
- 资助金额:
$ 7.23万 - 项目类别:
Standard Grant
Studies on the effects of volcanic outgassing and variations in solar UV intensity on Venusian climate
火山放气和太阳紫外线强度变化对金星气候影响的研究
- 批准号:
23KJ0201 - 财政年份:2023
- 资助金额:
$ 7.23万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Energy harvesting by indoor ambient thermal variations
通过室内环境温度变化收集能量
- 批准号:
23K03706 - 财政年份:2023
- 资助金额:
$ 7.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Disentangling runoff- and Terminus-driven Velocity Variations of Fast Flowing Outlet Glaciers
合作研究:解开快速流动的出口冰川径流和终点驱动的速度变化
- 批准号:
2234731 - 财政年份:2023
- 资助金额:
$ 7.23万 - 项目类别:
Standard Grant