Analysis of Defect Measures and Their Applications
缺陷测量分析及其应用
基本信息
- 批准号:9706862
- 负责人:
- 金额:$ 6.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-08-01 至 1998-09-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9706862 Lin The main theme of this proposal is the rigorous mathematical theory of defects in condensed matter physics. Of special interest are defects in liquid crystals and vortices (filaments) in superconductors. One describes the geometrical properties, topological structures, and dynamical behavior of these defects by analyzing the so-called defect measures. It is a rather formidable task. For liquid crystals one has to study first a certain nonlinear coupling of equations of Navier-Stokes type with those of evolutionary approximate harmonic map systems. For superconductivity, one studies then the flow of Yang-Mills with certain nonlinear effects (Eliashberg-Gorkov equations). The next key issues are understanding the development of singularities of solutions, such as energy concentrations, sharp interfaces, and bubbling phenomena. In particular, one must examine singularities in the flow of harmonic and approximate harmonic maps and the dynamics of vortices and filaments in Ginzburg-Landau equations. This study should also give insight into other problems that arise in classical fluid dynamics. Various natural phenomena can be described by solutions of certain partial differential equations. Often singular behavior of solutions reveal not only facets but also essential characteristics of the problems they describe. The latter is very important for technological and industrial applications. For example, the type II superconductors (high-temperature super-conductors) are characterized by the existence of a certain lattice structure of vortices and filaments. To control the dynamics of these vortices and filaments is one of the central issues for the applicability of these high-tech materials. It is, therefore, a very basic problem of continuing interest. Despite many serious efforts, very few mathematical methods exist so far to tackle such problems. The present proposal presents a new and novel theoretical approach which has already been shown, by preliminary analysis, to be useful for a class of problems arising in material science. Modern technology needs high performance, high energy efficiency, and high accuracy. Both liquid crystals and superconductors are in such a category. This study will yield new and insightful qualitative and quantitative information regarding these fascinating materials, in addition to having its own intrinsic mathematical importance and interest.
9706862 林 这一提议的主题是凝聚态物理学中缺陷的严格数学理论。特别感兴趣的是 液晶中的缺陷和超导体中的涡旋(细丝)。一个描述的几何性质,拓扑结构和动力学行为的缺陷,通过分析所谓的缺陷措施。这是一项相当艰巨的任务。对于液晶,首先必须研究Navier-Stokes型方程与演化近似调和映射系统方程的某种非线性耦合。对于超导性,人们研究具有某些非线性效应的杨-米尔斯流(Eliashberg-Gorkov方程)。下一个关键问题是理解解决方案的奇点的发展,如能量集中,尖锐的界面和冒泡现象。特别是,人们必须研究奇点的流动的谐波和近似谐波地图和动力学的旋涡和细丝在金斯堡-朗道方程。这项研究也应该给洞察力,在经典流体动力学中出现的其他问题。 各种自然现象都可以用某些偏微分方程的解来描述。通常,解决方案的奇异行为不仅揭示了问题的各个方面,而且揭示了它们所描述的问题的本质特征。后者对于技术和工业应用非常重要。例如,II型超导体(高温超导体)的特征在于存在一定的涡旋和细丝晶格结构。控制这些涡和细丝的动力学是这些方法的适用性的中心问题之一。 高科技材料。因此,这是一个非常基本的持续利益问题。尽管有许多认真的努力,但迄今为止很少有数学方法来解决这些问题。本建议提出了一种新的和新颖的理论方法,已经表明, 初步分析,对材料科学中出现的一类问题有用。现代技术需要高性能、高能效和高精度。液晶和超导体都属于这一类。这项研究将产生新的和有见地的定性和定量信息,这些迷人的材料,除了有自己的内在数学的重要性和兴趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fang-Hua Lin其他文献
The singular set of an energy minimizing map fromB 4 toS 2
- DOI:
10.1007/bf02567926 - 发表时间:
1990-12-01 - 期刊:
- 影响因子:0.600
- 作者:
Robert Hardt;Fang-Hua Lin - 通讯作者:
Fang-Hua Lin
Plateau's problem for H-convex curves
- DOI:
10.1007/bf01277607 - 发表时间:
1987-12-01 - 期刊:
- 影响因子:0.600
- 作者:
Fang-Hua Lin - 通讯作者:
Fang-Hua Lin
Fang-Hua Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fang-Hua Lin', 18)}}的其他基金
Hydrodynamics of Liquid Crystals and Heat Flow of Harmonic Maps
液晶的流体动力学和谐波图的热流
- 批准号:
2247773 - 财政年份:2023
- 资助金额:
$ 6.23万 - 项目类别:
Standard Grant
Calculus of Variations and Partial Differential Equations
变分和偏微分方程微积分
- 批准号:
1955249 - 财政年份:2020
- 资助金额:
$ 6.23万 - 项目类别:
Standard Grant
Hydrodynamics of Liquid Crystals and Extremum Problems for Eigenvalues
液晶流体动力学和特征值极值问题
- 批准号:
1501000 - 财政年份:2015
- 资助金额:
$ 6.23万 - 项目类别:
Continuing Grant
Analysis of Complex Fluids and Moving Phase Boundaries
复杂流体和移动相边界的分析
- 批准号:
1159313 - 财政年份:2012
- 资助金额:
$ 6.23万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Emerging issues in the sciences involving non standard diffusion
FRG:协作研究:涉及非标准扩散的科学中的新问题
- 批准号:
1065964 - 财政年份:2011
- 资助金额:
$ 6.23万 - 项目类别:
Standard Grant
Analysis on Faddeev, Skyrme and Some Complex Fluid Models
Faddeev、Skyrme及一些复杂流体模型分析
- 批准号:
0700517 - 财政年份:2007
- 资助金额:
$ 6.23万 - 项目类别:
Continuing Grant
Analysis of Topological Singularities and Their Dynamics
拓扑奇点及其动力学分析
- 批准号:
0201443 - 财政年份:2002
- 资助金额:
$ 6.23万 - 项目类别:
Continuing Grant
Analysis of Defect Measures and Their Applications
缺陷测量分析及其应用
- 批准号:
9896391 - 财政年份:1997
- 资助金额:
$ 6.23万 - 项目类别:
Continuing Grant
Mathematical Sciences: Mathematical Theory of Liquid Crystals and Free Boundaries
数学科学:液晶和自由边界的数学理论
- 批准号:
9401546 - 财政年份:1994
- 资助金额:
$ 6.23万 - 项目类别:
Continuing Grant
Mathematical Sciences: Presidential Young Investigator Award
数学科学:总统青年研究员奖
- 批准号:
9149555 - 财政年份:1991
- 资助金额:
$ 6.23万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 6.23万 - 项目类别:
Continuing Grant
Corneal epithelial cell bandage to treat persistent epithelial defect
角膜上皮细胞绷带治疗持续性上皮缺损
- 批准号:
MR/Y019385/1 - 财政年份:2024
- 资助金额:
$ 6.23万 - 项目类别:
Research Grant
Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
- 批准号:
2425965 - 财政年份:2024
- 资助金额:
$ 6.23万 - 项目类别:
Standard Grant
Comparative single-cell analysis of disease-derived stem cells to identify the cell fate defect on the cell differentiation trajectory
对疾病来源的干细胞进行比较单细胞分析,以确定细胞分化轨迹上的细胞命运缺陷
- 批准号:
23H02466 - 财政年份:2023
- 资助金额:
$ 6.23万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of novel polyglycolic acid material for regeneration of central airway defect
新型聚乙醇酸再生中央气道缺损材料的研制
- 批准号:
23K08291 - 财政年份:2023
- 资助金额:
$ 6.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
PFI-TT: Enhancing Manufacturing with Real-Time Defect Detection using mm-Wave Antenna Sensors
PFI-TT:使用毫米波天线传感器通过实时缺陷检测增强制造
- 批准号:
2234594 - 财政年份:2023
- 资助金额:
$ 6.23万 - 项目类别:
Standard Grant
Digital Platform for Defect-free Plastic Pipes Welding (DIGIPIPEWELD)
无缺陷塑料管道焊接数字平台 (DIGIPIPEWELD)
- 批准号:
10055000 - 财政年份:2023
- 资助金额:
$ 6.23万 - 项目类别:
Collaborative R&D
Characteristic control based on quantitative evaluation of nano-defect and defect-induced strain field in functional materials
基于功能材料纳米缺陷和缺陷诱发应变场定量评估的特性控制
- 批准号:
23KK0087 - 财政年份:2023
- 资助金额:
$ 6.23万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
CalibXBatt - Calibration of XCT-Automatic Defect Recognition for Battery Inspection [10050292]
CalibXBatt - 用于电池检查的 XCT 自动缺陷识别校准 [10050292]
- 批准号:
10061803 - 财政年份:2023
- 资助金额:
$ 6.23万 - 项目类别:
Collaborative R&D
Investigation of genetic variants and clinical risk factors associated with the progression rate of visual field defect in glaucoma
与青光眼视野缺损进展率相关的遗传变异和临床危险因素的调查
- 批准号:
23K09030 - 财政年份:2023
- 资助金额:
$ 6.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)