Analysis of Topological Singularities and Their Dynamics

拓扑奇点及其动力学分析

基本信息

  • 批准号:
    0201443
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-06-01 至 2008-11-30
  • 项目状态:
    已结题

项目摘要

Fang-Hua Lin, NYU Courant Institute. DMS-0201443Abstract: The first part of this proposal is to study the dynamics and thestability of topological singularities in several concrete cases including:magnetic vortices in the Landau-Lefschitz equations(Schrodinger and wavemaps coupled with magnetic fields),vortices and vortex rings in the trappeddilute Bose-Einstein condensates(certain nonlinear Schrodinger systemscoupled with potentials).The second part of the proposal is concerned withtopological singularities of Sobolev mappings.We shall examine the effectsof singularities on the denisity of smooth maps,the topology of mappingspaces,the regularity and singularity of various energy minimizers.Ofparticular interest is the global structures of singular sets and asymptotic behavior of energy minimizers near such topological singularities. Many interesting natural phenomena contain some sort singular behaviorand they are often manifiested through energy concentrations.Singularitiesof solutions of partial differential equations which describe thesephenomena are,therefore,an important part of facets.We propose here toestablish a rigourous mathematical theory concerning probabilly a mostimportant class of such singularities ,topological singularity.Topologicalsingularities arise in many physical problems and have been an importantsubject of much study over past many years.Among known examples aremagnetic bubbles in a fereomagnetic(or anti-ferromagnetic)continuum,vortices in Bose-Einstein condensates and superconductivity,topological defects inliquid crystals,as well as skyrminors,monopoles and instantons which areparticle like solutions in generic models of high energy physics.Thesesingularities not only carry definite topological informations but alsoquantified amount of energies.Because of this they are often moreobservable and stable energitically and dynamically.Thus a rigourousmathematical theory for such singularity would be not only mathematicallychallenging and interesting but also of fundamental importance in sciences.
林芳华,纽约大学考兰特学院。DMS-0201443摘要:本方案的第一部分是研究几种具体情况下拓扑奇点的动力学和稳定性,包括:Landau-Lefschitz方程(与磁场耦合的薛定谔方程和波映射)中的磁涡旋,陷阱稀疏玻色-爱因斯坦凝聚(某些与势耦合的非线性薛定谔系统)中的涡旋和涡环。第二部分是关于Sobolev映射的拓扑奇点。我们将研究奇点对光滑映射的致密性、映射空间的拓扑、各种能量最小化的正则性和奇异性的影响。特别感兴趣的是奇异集的整体结构和拓扑奇点附近能量极小子的渐近行为。许多有趣的自然现象都包含着某种奇异行为,它们通常是通过能量集中来描述的。因此,描述这些现象的偏微分方程解的奇异性是各方面的一个重要部分。我们建议建立关于这类奇点中最重要的一类--拓扑奇性的严格的数学理论。拓扑奇性存在于许多物理问题中,在过去的许多年里一直是许多研究的重要课题。已知的例子有铁磁(或反铁磁)连续介质中的磁泡,玻色-爱因斯坦凝聚体中的涡旋和超导,液晶中的拓扑缺陷,以及天空小单极子和瞬子在高能物理的一般模型中是类似粒子的解。这些奇点不仅携带确定的拓扑信息,而且还量化了能量的量。正因为如此,它们通常在能量和动力学上更可观察和稳定。因此,对于这种奇点,一个严格的数学理论不仅在数学上具有挑战性和趣味性,而且在科学上也具有基础性的重要性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fang-Hua Lin其他文献

The singular set of an energy minimizing map fromB 4 toS 2
  • DOI:
    10.1007/bf02567926
  • 发表时间:
    1990-12-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Robert Hardt;Fang-Hua Lin
  • 通讯作者:
    Fang-Hua Lin
Plateau's problem for H-convex curves
  • DOI:
    10.1007/bf01277607
  • 发表时间:
    1987-12-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Fang-Hua Lin
  • 通讯作者:
    Fang-Hua Lin

Fang-Hua Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fang-Hua Lin', 18)}}的其他基金

Hydrodynamics of Liquid Crystals and Heat Flow of Harmonic Maps
液晶的流体动力学和谐波图的热流
  • 批准号:
    2247773
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Calculus of Variations and Partial Differential Equations
变分和偏微分方程微积分
  • 批准号:
    1955249
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Hydrodynamics of Liquid Crystals and Extremum Problems for Eigenvalues
液晶流体动力学和特征值极值问题
  • 批准号:
    1501000
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Analysis of Complex Fluids and Moving Phase Boundaries
复杂流体和移动相边界的分析
  • 批准号:
    1159313
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Emerging issues in the sciences involving non standard diffusion
FRG:协作研究:涉及非标准扩散的科学中的新问题
  • 批准号:
    1065964
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Analysis on Faddeev, Skyrme and Some Complex Fluid Models
Faddeev、Skyrme及一些复杂流体模型分析
  • 批准号:
    0700517
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Analysis of Defect Measures and Their Applications
缺陷测量分析及其应用
  • 批准号:
    9706862
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Analysis of Defect Measures and Their Applications
缺陷测量分析及其应用
  • 批准号:
    9896391
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Mathematical Theory of Liquid Crystals and Free Boundaries
数学科学:液晶和自由边界的数学理论
  • 批准号:
    9401546
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Presidential Young Investigator Award
数学科学:总统青年研究员奖
  • 批准号:
    9149555
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Control of spin and polarization by hidden topological singularities
通过隐藏的拓扑奇点控制自旋和偏振
  • 批准号:
    20K14390
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Topological types and analytic invariants of complex surface singularities
复杂表面奇点的拓扑类型和解析不变量
  • 批准号:
    17K05216
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topological study of real singularities and manifolds using fibring structures
使用纤维结构对实奇点和流形进行拓扑研究
  • 批准号:
    16K05140
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topological and analytical study on complex projective hypersurfaces with quasi-ordinary singularities
具有拟普通奇点的复杂射影超曲面的拓扑与分析研究
  • 批准号:
    19540093
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topological Invariants and Singularities in Birational Geometry
双有理几何中的拓扑不变量和奇点
  • 批准号:
    0456990
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Topological Invariants and Singularities in Birational Geometry
双有理几何中的拓扑不变量和奇点
  • 批准号:
    0548325
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Topological and analytical invariants of singularities
奇点的拓扑和分析不变量
  • 批准号:
    0088950
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Topological theory of local systems having irregular singularities
具有不规则奇点的局部系统的拓扑理论
  • 批准号:
    09440065
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Mathematical Sciences: A Topological Invariant for Surface Singularities
数学科学:表面奇点的拓扑不变量
  • 批准号:
    9501219
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Topological Properties of Singularities and Solutions of Nonlinear Equations
数学科学:奇点的拓扑性质和非线性方程的解
  • 批准号:
    9400930
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了